Spaces:
Runtime error
Runtime error
File size: 21,476 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import distutils.command.clean
import glob
import importlib.util
import json
import os
import platform
import re
import shlex
import shutil
import subprocess
import sys
from pathlib import Path
from typing import List, Optional
import setuptools
import torch
from torch.utils.cpp_extension import (
CUDA_HOME,
BuildExtension,
CppExtension,
CUDAExtension,
)
this_dir = os.path.dirname(__file__)
pt_attn_compat_file_path = os.path.join(
this_dir, "xformers", "ops", "fmha", "torch_attention_compat.py"
)
# Define the module name
module_name = "torch_attention_compat"
# Load the module
spec = importlib.util.spec_from_file_location(module_name, pt_attn_compat_file_path)
attn_compat_module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = attn_compat_module
spec.loader.exec_module(attn_compat_module)
def get_extra_nvcc_flags_for_build_type(cuda_version: int) -> List[str]:
build_type = os.environ.get("XFORMERS_BUILD_TYPE", "RelWithDebInfo").lower()
if build_type == "relwithdebinfo":
if cuda_version >= 1201 and cuda_version < 1202:
print(
"Looks like we are using CUDA 12.1 which segfaults when provided with"
" the -generate-line-info flag. Disabling it."
)
return []
return ["--generate-line-info"]
elif build_type == "release":
return []
else:
raise ValueError(f"Unknown build type: {build_type}")
def fetch_requirements():
with open("requirements.txt") as f:
reqs = f.read().strip().split("\n")
return reqs
def get_local_version_suffix() -> str:
if not (Path(__file__).parent / ".git").is_dir():
# Most likely installing from a source distribution
return ""
date_suffix = datetime.datetime.now().strftime("%Y%m%d")
git_hash = subprocess.check_output(
["git", "rev-parse", "--short", "HEAD"], cwd=Path(__file__).parent
).decode("ascii")[:-1]
return f"+{git_hash}.d{date_suffix}"
def get_flash_version() -> str:
flash_dir = Path(__file__).parent / "third_party" / "flash-attention"
try:
return subprocess.check_output(
["git", "describe", "--tags", "--always"],
cwd=flash_dir,
).decode("ascii")[:-1]
except subprocess.CalledProcessError:
version = flash_dir / "version.txt"
if version.is_file():
return version.read_text().strip()
return "v?"
def generate_version_py(version: str) -> str:
content = "# noqa: C801\n"
content += f'__version__ = "{version}"\n'
tag = os.getenv("GIT_TAG")
if tag is not None:
content += f'git_tag = "{tag}"\n'
return content
def symlink_package(name: str, path: Path, is_building_wheel: bool) -> None:
cwd = Path(__file__).resolve().parent
path_from = cwd / path
path_to = os.path.join(cwd, *name.split("."))
try:
if os.path.islink(path_to):
os.unlink(path_to)
elif os.path.isdir(path_to):
shutil.rmtree(path_to)
else:
os.remove(path_to)
except FileNotFoundError:
pass
# OSError: [WinError 1314] A required privilege is not held by the client
# Windows requires special permission to symlink. Fallback to copy
# When building wheels for linux 3.7 and 3.8, symlinks are not included
# So we force a copy, see #611
use_symlink = os.name != "nt" and not is_building_wheel
if use_symlink:
os.symlink(src=path_from, dst=path_to)
else:
shutil.copytree(src=path_from, dst=path_to)
def get_cuda_version(cuda_dir) -> int:
nvcc_bin = "nvcc" if cuda_dir is None else cuda_dir + "/bin/nvcc"
raw_output = subprocess.check_output([nvcc_bin, "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = int(release[0])
bare_metal_minor = int(release[1][0])
assert bare_metal_minor < 100
return bare_metal_major * 100 + bare_metal_minor
def get_hip_version(rocm_dir) -> Optional[str]:
hipcc_bin = "hipcc" if rocm_dir is None else os.path.join(rocm_dir, "bin", "hipcc")
try:
raw_output = subprocess.check_output(
[hipcc_bin, "--version"], universal_newlines=True
)
except Exception as e:
print(
f"hip installation not found: {e} ROCM_PATH={os.environ.get('ROCM_PATH')}"
)
return None
for line in raw_output.split("\n"):
if "HIP version" in line:
return line.split()[-1]
return None
def get_flash_attention_nvcc_archs_flags(cuda_version: int):
# XXX: Not supported on windows for cuda<12
# https://github.com/Dao-AILab/flash-attention/issues/345
if platform.system() != "Linux" and cuda_version < 1200:
return []
# Figure out default archs to target
DEFAULT_ARCHS_LIST = ""
if cuda_version >= 1108:
DEFAULT_ARCHS_LIST = "8.0;8.6;9.0"
elif cuda_version > 1100:
DEFAULT_ARCHS_LIST = "8.0;8.6"
elif cuda_version == 1100:
DEFAULT_ARCHS_LIST = "8.0"
else:
return []
if os.getenv("XFORMERS_DISABLE_FLASH_ATTN", "0") != "0":
return []
# Supports `9.0`, `9.0+PTX`, `9.0a+PTX` etc...
PARSE_CUDA_ARCH_RE = re.compile(
r"(?P<major>[0-9]+)\.(?P<minor>[0-9])(?P<suffix>[a-zA-Z]{0,1})(?P<ptx>\+PTX){0,1}"
)
archs_list = os.environ.get("TORCH_CUDA_ARCH_LIST", DEFAULT_ARCHS_LIST)
nvcc_archs_flags = []
for arch in archs_list.replace(" ", ";").split(";"):
match = PARSE_CUDA_ARCH_RE.match(arch)
assert match is not None, f"Invalid sm version: {arch}"
num = 10 * int(match.group("major")) + int(match.group("minor"))
# Need at least Sm80
if num < 80:
continue
# Sm90 requires nvcc 11.8+
if num >= 90 and cuda_version < 1108:
continue
suffix = match.group("suffix")
nvcc_archs_flags.append(
f"-gencode=arch=compute_{num}{suffix},code=sm_{num}{suffix}"
)
if match.group("ptx") is not None:
nvcc_archs_flags.append(
f"-gencode=arch=compute_{num}{suffix},code=compute_{num}{suffix}"
)
return nvcc_archs_flags
def get_flash_attention_extensions(cuda_version: int, extra_compile_args):
nvcc_archs_flags = get_flash_attention_nvcc_archs_flags(cuda_version)
if not nvcc_archs_flags:
return []
flash_root = os.path.join(this_dir, "third_party", "flash-attention")
cutlass_inc = os.path.join(flash_root, "csrc", "cutlass", "include")
if not os.path.exists(flash_root) or not os.path.exists(cutlass_inc):
raise RuntimeError(
"flashattention submodule not found. Did you forget "
"to run `git submodule update --init --recursive` ?"
)
sources = ["csrc/flash_attn/flash_api.cpp"]
for f in glob.glob(os.path.join(flash_root, "csrc", "flash_attn", "src", "*.cu")):
sources.append(str(Path(f).relative_to(flash_root)))
common_extra_compile_args = ["-DFLASHATTENTION_DISABLE_ALIBI"]
return [
CUDAExtension(
name="xformers._C_flashattention",
sources=[os.path.join(flash_root, path) for path in sources],
extra_compile_args={
"cxx": extra_compile_args.get("cxx", []) + common_extra_compile_args,
"nvcc": extra_compile_args.get("nvcc", [])
+ [
"-O3",
"-std=c++17",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_HALF2_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
"--ptxas-options=-v",
]
+ nvcc_archs_flags
+ common_extra_compile_args
+ get_extra_nvcc_flags_for_build_type(cuda_version),
},
include_dirs=[
p.absolute()
for p in [
Path(flash_root) / "csrc" / "flash_attn",
Path(flash_root) / "csrc" / "flash_attn" / "src",
Path(flash_root) / "csrc" / "cutlass" / "include",
]
],
)
]
def rename_cpp_cu(cpp_files):
for entry in cpp_files:
shutil.copy(entry, os.path.splitext(entry)[0] + ".cu")
def get_extensions():
extensions_dir = os.path.join("xformers", "csrc")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"), recursive=True)
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu"), recursive=True)
fmha_source_cuda = glob.glob(
os.path.join(extensions_dir, "**", "fmha", "**", "*.cu"), recursive=True
)
exclude_files = ["small_k.cu", "decoder.cu", "attention_cutlass_rand_uniform.cu"]
fmha_source_cuda = [
c
for c in fmha_source_cuda
if not any(exclude_file in c for exclude_file in exclude_files)
]
source_hip = glob.glob(
os.path.join(extensions_dir, "attention", "hip_fmha", "**", "*.cpp"),
recursive=True,
)
source_hip_generated = glob.glob(
os.path.join(extensions_dir, "attention", "hip_fmha", "**", "*.cu"),
recursive=True,
)
# avoid the temporary .cu files generated under xformers/csrc/attention/hip_fmha
source_cuda = list(set(source_cuda) - set(source_hip_generated))
sources = list(set(sources) - set(source_hip))
sputnik_dir = os.path.join(this_dir, "third_party", "sputnik")
xformers_pt_cutlass_attn = os.getenv("XFORMERS_PT_CUTLASS_ATTN")
# By default, we try to link to torch internal CUTLASS attention implementation
# and silently switch to local CUTLASS attention build if no compatibility
# If we force 'torch CUTLASS switch' then setup will fail when no compatibility
if (
xformers_pt_cutlass_attn is None or xformers_pt_cutlass_attn == "1"
) and attn_compat_module.is_pt_cutlass_compatible(
force=xformers_pt_cutlass_attn == "1"
):
source_cuda = list(set(source_cuda) - set(fmha_source_cuda))
cutlass_dir = os.path.join(this_dir, "third_party", "cutlass", "include")
cutlass_util_dir = os.path.join(
this_dir, "third_party", "cutlass", "tools", "util", "include"
)
cutlass_examples_dir = os.path.join(this_dir, "third_party", "cutlass", "examples")
if not os.path.exists(cutlass_dir):
raise RuntimeError(
f"CUTLASS submodule not found at {cutlass_dir}. "
"Did you forget to run "
"`git submodule update --init --recursive` ?"
)
extension = CppExtension
define_macros = []
extra_compile_args = {"cxx": ["-O3", "-std=c++17"]}
if sys.platform == "win32":
define_macros += [("xformers_EXPORTS", None)]
extra_compile_args["cxx"].extend(
["/MP", "/Zc:lambda", "/Zc:preprocessor", "/Zc:__cplusplus"]
)
elif "OpenMP not found" not in torch.__config__.parallel_info():
extra_compile_args["cxx"].append("-fopenmp")
include_dirs = [extensions_dir]
ext_modules = []
cuda_version = None
hip_version = None
flash_version = "0.0.0"
use_pt_flash = False
if (
(torch.cuda.is_available() and ((CUDA_HOME is not None)))
or os.getenv("FORCE_CUDA", "0") == "1"
or os.getenv("TORCH_CUDA_ARCH_LIST", "") != ""
):
cuda_version = get_cuda_version(CUDA_HOME)
extension = CUDAExtension
sources += source_cuda
include_dirs += [
sputnik_dir,
cutlass_dir,
cutlass_util_dir,
cutlass_examples_dir,
]
nvcc_flags = [
"-DHAS_PYTORCH",
"--use_fast_math",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--extended-lambda",
"-D_ENABLE_EXTENDED_ALIGNED_STORAGE",
"-std=c++17",
] + get_extra_nvcc_flags_for_build_type(cuda_version)
if os.getenv("XFORMERS_ENABLE_DEBUG_ASSERTIONS", "0") != "1":
nvcc_flags.append("-DNDEBUG")
nvcc_flags += shlex.split(os.getenv("NVCC_FLAGS", ""))
if cuda_version >= 1102:
nvcc_flags += [
"--threads",
"4",
"--ptxas-options=-v",
]
if sys.platform == "win32":
nvcc_flags += [
"-Xcompiler",
"/Zc:lambda",
"-Xcompiler",
"/Zc:preprocessor",
"-Xcompiler",
"/Zc:__cplusplus",
]
extra_compile_args["nvcc"] = nvcc_flags
flash_extensions = []
xformers_pt_flash_attn = os.getenv("XFORMERS_PT_FLASH_ATTN")
# check if the current device supports flash_attention
nvcc_archs_flags = get_flash_attention_nvcc_archs_flags(cuda_version)
if not nvcc_archs_flags:
if xformers_pt_flash_attn == "1":
raise ValueError(
"Current Torch Flash-Attention is not available on this device"
)
else:
# By default, we try to link to torch internal flash attention implementation
# and silently switch to local flash attention build if no compatibility
# If we force 'torch FA switch' then setup will fail when no compatibility
if (
xformers_pt_flash_attn is None or xformers_pt_flash_attn == "1"
) and attn_compat_module.is_pt_flash_compatible(
force=xformers_pt_flash_attn == "1"
):
flash_version = torch.nn.attention._get_flash_version() + "-pt"
use_pt_flash = True
else:
flash_extensions = get_flash_attention_extensions(
cuda_version=cuda_version, extra_compile_args=extra_compile_args
)
if flash_extensions:
flash_version = get_flash_version()
ext_modules += flash_extensions
# NOTE: This should not be applied to Flash-Attention
# see https://github.com/Dao-AILab/flash-attention/issues/359
extra_compile_args["nvcc"] += [
# Workaround for a regression with nvcc > 11.6
# See https://github.com/facebookresearch/xformers/issues/712
"--ptxas-options=-O2",
"--ptxas-options=-allow-expensive-optimizations=true",
]
elif torch.cuda.is_available() and torch.version.hip:
rename_cpp_cu(source_hip)
rocm_home = os.getenv("ROCM_PATH")
hip_version = get_hip_version(rocm_home)
source_hip_cu = []
for ff in source_hip:
source_hip_cu += [ff.replace(".cpp", ".cu")]
extension = CUDAExtension
sources += source_hip_cu
include_dirs += [
Path(this_dir) / "xformers" / "csrc" / "attention" / "hip_fmha"
]
include_dirs += [
Path(this_dir) / "third_party" / "composable_kernel_tiled" / "include"
]
generator_flag = []
cc_flag = ["-DBUILD_PYTHON_PACKAGE"]
extra_compile_args = {
"cxx": ["-O3", "-std=c++17"] + generator_flag,
"nvcc": [
"-O3",
"-std=c++17",
f"--offload-arch={os.getenv('HIP_ARCHITECTURES', 'native')}",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-DCK_FMHA_FWD_FAST_EXP2=1",
"-fgpu-flush-denormals-to-zero",
"-Werror",
"-Woverloaded-virtual",
]
+ generator_flag
+ cc_flag,
}
ext_modules.append(
extension(
"xformers._C",
sorted(sources),
include_dirs=[os.path.abspath(p) for p in include_dirs],
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
)
return ext_modules, {
"version": {
"cuda": cuda_version,
"hip": hip_version,
"torch": torch.__version__,
"python": platform.python_version(),
"flash": flash_version,
"use_torch_flash": use_pt_flash,
},
"env": {
k: os.environ.get(k)
for k in [
"TORCH_CUDA_ARCH_LIST",
"PYTORCH_ROCM_ARCH",
"XFORMERS_BUILD_TYPE",
"XFORMERS_ENABLE_DEBUG_ASSERTIONS",
"NVCC_FLAGS",
"XFORMERS_PACKAGE_FROM",
]
},
}
class clean(distutils.command.clean.clean): # type: ignore
def run(self):
if os.path.exists(".gitignore"):
with open(".gitignore", "r") as f:
ignores = f.read()
for wildcard in filter(None, ignores.split("\n")):
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
# It's an old-style class in Python 2.7...
distutils.command.clean.clean.run(self)
class BuildExtensionWithExtraFiles(BuildExtension):
def __init__(self, *args, **kwargs) -> None:
self.xformers_build_metadata = kwargs.pop("extra_files")
self.pkg_name = "xformers"
super().__init__(*args, **kwargs)
def build_extensions(self) -> None:
super().build_extensions()
for filename, content in self.xformers_build_metadata.items():
with open(
os.path.join(self.build_lib, self.pkg_name, filename), "w+"
) as fp:
fp.write(content)
def copy_extensions_to_source(self) -> None:
"""
Used for `pip install -e .`
Copies everything we built back into the source repo
"""
build_py = self.get_finalized_command("build_py")
package_dir = build_py.get_package_dir(self.pkg_name)
for filename in self.xformers_build_metadata.keys():
inplace_file = os.path.join(package_dir, filename)
regular_file = os.path.join(self.build_lib, self.pkg_name, filename)
self.copy_file(regular_file, inplace_file, level=self.verbose)
super().copy_extensions_to_source()
if __name__ == "__main__":
if os.getenv("BUILD_VERSION"): # In CI
version = os.getenv("BUILD_VERSION", "0.0.0")
else:
version_txt = os.path.join(this_dir, "version.txt")
with open(version_txt) as f:
version = f.readline().strip()
version += get_local_version_suffix()
is_building_wheel = "bdist_wheel" in sys.argv
# Embed a fixed version of flash_attn
# NOTE: The correct way to do this would be to use the `package_dir`
# parameter in `setuptools.setup`, but this does not work when
# developing in editable mode
# See: https://github.com/pypa/pip/issues/3160 (closed, but not fixed)
symlink_package(
"xformers._flash_attn",
Path("third_party") / "flash-attention" / "flash_attn",
is_building_wheel,
)
extensions, extensions_metadata = get_extensions()
setuptools.setup(
name="xformers",
description="XFormers: A collection of composable Transformer building blocks.",
version=version,
install_requires=fetch_requirements(),
packages=setuptools.find_packages(exclude=("tests*", "benchmarks*")),
ext_modules=extensions,
cmdclass={
"build_ext": BuildExtensionWithExtraFiles.with_options(
no_python_abi_suffix=True,
extra_files={
"cpp_lib.json": json.dumps(extensions_metadata),
"version.py": generate_version_py(version),
},
),
"clean": clean,
},
url="https://facebookresearch.github.io/xformers/",
python_requires=">=3.7",
author="Facebook AI Research",
author_email="[email protected]",
long_description="XFormers: A collection of composable Transformer building blocks."
+ "XFormers aims at being able to reproduce most architectures in the Transformer-family SOTA,"
+ "defined as compatible and combined building blocks as opposed to monolithic models",
long_description_content_type="text/markdown",
classifiers=[
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"License :: OSI Approved :: BSD License",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Operating System :: OS Independent",
],
zip_safe=False,
)
|