Spaces:
Runtime error
Runtime error
File size: 7,141 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# CREDITS:
# inspired by
# https://github.com/nateraw/lightning-vision-transformer
# which in turn references https://github.com/lucidrains/vit-pytorch
# Orignal author: Sean Naren
import math
from enum import Enum
import pytorch_lightning as pl
import torch
from pl_bolts.datamodules import CIFAR10DataModule
from torch import nn
from torchmetrics import Accuracy
from xformers.factory import xFormer, xFormerConfig
class Classifier(str, Enum):
GAP = "gap"
TOKEN = "token"
class VisionTransformer(pl.LightningModule):
def __init__(
self,
steps,
learning_rate=5e-4,
betas=(0.9, 0.99),
weight_decay=0.03,
image_size=32,
num_classes=10,
patch_size=2,
dim=384,
n_layer=6,
n_head=6,
resid_pdrop=0.0,
attn_pdrop=0.0,
mlp_pdrop=0.0,
attention="scaled_dot_product",
residual_norm_style="pre",
hidden_layer_multiplier=4,
use_rotary_embeddings=True,
linear_warmup_ratio=0.1,
classifier: Classifier = Classifier.TOKEN,
):
super().__init__()
# all the inputs are saved under self.hparams (hyperparams)
self.save_hyperparameters()
assert image_size % patch_size == 0
num_patches = (image_size // patch_size) ** 2
# A list of the encoder or decoder blocks which constitute the Transformer.
xformer_config = [
{
"block_type": "encoder",
"num_layers": n_layer,
"dim_model": dim,
"residual_norm_style": residual_norm_style,
"multi_head_config": {
"num_heads": n_head,
"residual_dropout": resid_pdrop,
"use_rotary_embeddings": use_rotary_embeddings,
"attention": {
"name": attention,
"dropout": attn_pdrop,
"causal": False,
},
},
"feedforward_config": {
"name": "MLP",
"dropout": mlp_pdrop,
"activation": "gelu",
"hidden_layer_multiplier": hidden_layer_multiplier,
},
"position_encoding_config": {
"name": "learnable",
"seq_len": num_patches,
"dim_model": dim,
"add_class_token": classifier == Classifier.TOKEN,
},
"patch_embedding_config": {
"in_channels": 3,
"out_channels": dim,
"kernel_size": patch_size,
"stride": patch_size,
},
}
]
# The ViT trunk
config = xFormerConfig(xformer_config)
self.vit = xFormer.from_config(config)
print(self.vit)
# The classifier head
self.ln = nn.LayerNorm(dim)
self.head = nn.Linear(dim, num_classes)
self.criterion = torch.nn.CrossEntropyLoss()
self.val_accuracy = Accuracy()
@staticmethod
def linear_warmup_cosine_decay(warmup_steps, total_steps):
"""
Linear warmup for warmup_steps, with cosine annealing to 0 at total_steps
"""
def fn(step):
if step < warmup_steps:
return float(step) / float(max(1, warmup_steps))
progress = float(step - warmup_steps) / float(
max(1, total_steps - warmup_steps)
)
return 0.5 * (1.0 + math.cos(math.pi * progress))
return fn
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.parameters(),
lr=self.hparams.learning_rate,
betas=self.hparams.betas,
weight_decay=self.hparams.weight_decay,
)
warmup_steps = int(self.hparams.linear_warmup_ratio * self.hparams.steps)
scheduler = {
"scheduler": torch.optim.lr_scheduler.LambdaLR(
optimizer,
self.linear_warmup_cosine_decay(warmup_steps, self.hparams.steps),
),
"interval": "step",
}
return [optimizer], [scheduler]
def forward(self, x):
x = self.vit(x)
x = self.ln(x)
if self.hparams.classifier == Classifier.TOKEN:
x = x[:, 0] # only consider the token, we're classifying anyway
elif self.hparams.classifier == Classifier.GAP:
x = x.mean(dim=1) # mean over sequence len
x = self.head(x)
return x
def training_step(self, batch, _):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
self.logger.log_metrics(
{
"train_loss": loss.mean(),
"learning_rate": self.lr_schedulers().get_last_lr()[0],
},
step=self.global_step,
)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
acc = self.val_accuracy(y_hat, y)
if stage:
self.log(f"{stage}_loss", loss, prog_bar=True)
self.log(f"{stage}_acc", acc, prog_bar=True)
def validation_step(self, batch, _):
self.evaluate(batch, "val")
def test_step(self, batch, _):
self.evaluate(batch, "test")
if __name__ == "__main__":
pl.seed_everything(42)
# Adjust batch depending on the available memory on your machine.
# You can also use reversible layers to save memory
REF_BATCH = 512
BATCH = 128
MAX_EPOCHS = 30
NUM_WORKERS = 4
GPUS = 1
# We'll use a datamodule here, which already handles dataset/dataloader/sampler
# - See https://pytorchlightning.github.io/lightning-tutorials/notebooks/lightning_examples/cifar10-baseline.html
# for a full tutorial
# - Please note that default transforms are being used
dm = CIFAR10DataModule(
data_dir="data",
batch_size=BATCH,
num_workers=NUM_WORKERS,
pin_memory=True,
)
image_size = dm.size(-1) # 32 for CIFAR
num_classes = dm.num_classes # 10 for CIFAR
# compute total number of steps
batch_size = BATCH * GPUS
steps = dm.num_samples // REF_BATCH * MAX_EPOCHS
lm = VisionTransformer(
steps=steps,
image_size=image_size,
num_classes=num_classes,
attention="scaled_dot_product",
classifier=Classifier.TOKEN,
residual_norm_style="pre",
use_rotary_embeddings=True,
)
trainer = pl.Trainer(
gpus=GPUS,
max_epochs=MAX_EPOCHS,
detect_anomaly=False,
precision=16,
accumulate_grad_batches=REF_BATCH // BATCH,
)
trainer.fit(lm, dm)
# check the training
trainer.test(lm, datamodule=dm)
|