File size: 19,488 Bytes
e202b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "view-in-github"
      },
      "source": [
        "<a href=\"https://github.com/facebookresearch/xformers/blob/colab_example/docs/source/xformers_mingpt.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "RzcuJMXHZMc7"
      },
      "source": [
        "A MinGPT + Lightning + xFormers example Code from Sean Naren (@seannaren)\n",
        "This is an hommage to https://github.com/karpathy/minGPT\n",
        "\n",
        "\n",
        "See https://github.com/facebookresearch/xformers/blob/main/examples/microGPT.py\n",
        "for a matching script\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gJlGTQ-lYERT",
        "outputId": "52c1c057-6106-422c-9bb9-7fc4ef8262ce"
      },
      "outputs": [],
      "source": [
        "!pip install --pre torch\n",
        "!pip install xformers pytorch_lightning numpy"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "zMQWysh7Y6nC"
      },
      "source": [
        "Now check all our dependencies. If Triton is not compatible with the GPU or the CUDA runtime served by Colab, please make sure that it's not installed in the above"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "fphnY4yrY9z_",
        "outputId": "744c8bcc-9f71-42bb-b3c2-381622fa8a8b"
      },
      "outputs": [],
      "source": [
        "import math\n",
        "import os\n",
        "\n",
        "import pytorch_lightning as pl\n",
        "import torch\n",
        "import torch.nn as nn\n",
        "from pytorch_lightning import Trainer, seed_everything\n",
        "from pytorch_lightning.utilities import rank_zero_info\n",
        "from torch.nn import functional as F\n",
        "from torch.utils.data import DataLoader, Dataset, RandomSampler\n",
        "\n",
        "from xformers.factory.model_factory import xFormer, xFormerConfig"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "zXTliQkHZI-6"
      },
      "source": [
        "Let's first define our GPT-like model. Please note that all the parameters in the config dictionnary can be changed more or less at will, but the attention mechanism needs to be compatible with causality constraints. We'll be using Pytorch Lightning to nicely specify all the specific training steps"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "id": "dQcFhB_jZXaH"
      },
      "outputs": [],
      "source": [
        "class GPT(pl.LightningModule):\n",
        "    \"\"\"  the full GPT language model, with a context size of block_size \"\"\"\n",
        "\n",
        "    def __init__(\n",
        "        self,\n",
        "        vocab_size,\n",
        "        weight_decay=0.1,\n",
        "        betas=(0.9, 0.95),\n",
        "        learning_rate=1e-4,\n",
        "        n_embd=512,\n",
        "        block_size=128,\n",
        "        n_layer=8,\n",
        "        n_head=4,\n",
        "        resid_pdrop=0.1,\n",
        "        attn_pdrop=0.1,\n",
        "        mlp_pdrop=0.1,\n",
        "        attention=\"scaled_dot_product\",\n",
        "        hidden_layer_multiplier=4,\n",
        "        warmup_tokens=20,\n",
        "        final_tokens=1000,\n",
        "    ):\n",
        "        super().__init__()\n",
        "\n",
        "        # auto creates self.hparams from the method signature\n",
        "        self.save_hyperparameters()\n",
        "\n",
        "        # A list of the encoder or decoder blocks which constitute the Transformer.\n",
        "        xformer_config = [\n",
        "            {\n",
        "                \"block_type\": \"encoder\",\n",
        "                \"num_layers\": self.hparams.n_layer,\n",
        "                \"dim_model\": self.hparams.n_embd,\n",
        "                \"residual_norm_style\": \"pre\",\n",
        "                \"position_encoding_config\": {\n",
        "                    \"name\": \"vocab\",\n",
        "                    \"seq_len\": self.hparams.block_size,\n",
        "                    \"vocab_size\": self.hparams.vocab_size,\n",
        "                },\n",
        "                \"multi_head_config\": {\n",
        "                    \"num_heads\": self.hparams.n_head,\n",
        "                    \"residual_dropout\": self.hparams.resid_pdrop,\n",
        "                    \"use_rotary_embeddings\": True,\n",
        "                    \"attention\": {\n",
        "                        \"name\": self.hparams.attention,\n",
        "                        \"dropout\": self.hparams.attn_pdrop,\n",
        "                        \"causal\": True,\n",
        "                        \"seq_len\": self.hparams.block_size,\n",
        "                    },\n",
        "                },\n",
        "                \"feedforward_config\": {\n",
        "                    \"name\": \"MLP\",\n",
        "                    \"dropout\": self.hparams.mlp_pdrop,\n",
        "                    \"activation\": \"gelu\",\n",
        "                    \"hidden_layer_multiplier\": self.hparams.hidden_layer_multiplier,\n",
        "                },\n",
        "            }\n",
        "        ]\n",
        "\n",
        "        config = xFormerConfig(xformer_config)\n",
        "        self.model = xFormer.from_config(config)\n",
        "\n",
        "        # decoder head\n",
        "        self.ln_f = nn.LayerNorm(self.hparams.n_embd)\n",
        "        self.head = nn.Linear(self.hparams.n_embd, self.hparams.vocab_size, bias=False)\n",
        "\n",
        "        self.block_size = self.hparams.block_size\n",
        "        self.apply(self._init_weights)\n",
        "\n",
        "        self._tokens_seen = 0\n",
        "\n",
        "    def _init_weights(self, module):\n",
        "        if isinstance(module, (nn.Linear, nn.Embedding)):\n",
        "            module.weight.data.normal_(mean=0.0, std=0.02)\n",
        "            if isinstance(module, nn.Linear) and module.bias is not None:\n",
        "                module.bias.data.zero_()\n",
        "        elif isinstance(module, nn.LayerNorm):\n",
        "            module.bias.data.zero_()\n",
        "            module.weight.data.fill_(1.0)\n",
        "\n",
        "        # Reset the token counter\n",
        "        self._tokens_seen = 0\n",
        "\n",
        "    def get_block_size(self):\n",
        "        return self.block_size\n",
        "\n",
        "    def configure_optimizers(self):\n",
        "        # Create the optimizer and the training schedule:\n",
        "        # - Handle the per-param weight decay\n",
        "        no_decay = [\"bias\", \"LayerNorm.weight\"]\n",
        "        params_decay = [\n",
        "            p for n, p in self.named_parameters() if not any(nd in n for nd in no_decay)\n",
        "        ]\n",
        "        params_nodecay = [\n",
        "            p for n, p in self.named_parameters() if any(nd in n for nd in no_decay)\n",
        "        ]\n",
        "        optim_groups = [\n",
        "            {\"params\": params_decay, \"weight_decay\": self.hparams.weight_decay},\n",
        "            {\"params\": params_nodecay, \"weight_decay\": 0.0},\n",
        "        ]\n",
        "\n",
        "        # - Start with a warm up, ramp up then cosine\n",
        "        optimizer = torch.optim.AdamW(\n",
        "            optim_groups, lr=self.hparams.learning_rate, betas=self.hparams.betas\n",
        "        )\n",
        "\n",
        "        def update_lr(*_):\n",
        "            config = self.hparams\n",
        "\n",
        "            if self._tokens_seen < config.warmup_tokens:\n",
        "                # linear warmup\n",
        "                lr_mult = float(self._tokens_seen) / float(max(1, config.warmup_tokens))\n",
        "                lr_mult = max(lr_mult, 1e-2)  # could be that we've not seen any yet\n",
        "            else:\n",
        "                # cosine learning rate decay\n",
        "                progress = float(self._tokens_seen - config.warmup_tokens) / float(\n",
        "                    max(1, config.final_tokens - config.warmup_tokens)\n",
        "                )\n",
        "                lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress)))\n",
        "\n",
        "            return lr_mult\n",
        "\n",
        "        lr_scheduler = {\n",
        "            \"scheduler\": torch.optim.lr_scheduler.LambdaLR(\n",
        "                optimizer,\n",
        "                lr_lambda=[update_lr, update_lr],\n",
        "            ),\n",
        "            \"name\": \"learning_rate\",\n",
        "            \"interval\": \"step\",  # The unit of the scheduler's step size\n",
        "            \"frequency\": 1,  # The frequency of the scheduler\n",
        "        }\n",
        "        return [optimizer], [lr_scheduler]\n",
        "\n",
        "    def forward(self, src):\n",
        "        # predict the next tokens (in latent space)\n",
        "        prediction = self.model(src)\n",
        "\n",
        "        # translate the predictions into tokens\n",
        "        prediction = self.ln_f(prediction)\n",
        "        logits = self.head(prediction)\n",
        "\n",
        "        return logits\n",
        "\n",
        "    def training_step(self, batch, _):\n",
        "        src, targets = batch\n",
        "\n",
        "        # Update the tokens we've seen (tracked for LR scheduling)\n",
        "        self._tokens_seen += (src >= 0).numel()\n",
        "\n",
        "        # same action as inference\n",
        "        logits = self(src)\n",
        "\n",
        "        # if we are given some desired targets also calculate the loss\n",
        "        loss = None\n",
        "        if targets is not None:\n",
        "            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))\n",
        "\n",
        "        self.logger.log_metrics(\n",
        "            {\n",
        "                \"train_loss\": loss.mean(),\n",
        "                \"learning_rate\": self.lr_schedulers().get_last_lr()[0],\n",
        "            },\n",
        "            step=trainer.global_step,\n",
        "        )\n",
        "\n",
        "        return loss"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "99vrWKt0Z17x"
      },
      "source": [
        "Now let's define our dataset. This comes straight from MinGPT, and the idea is to serve a sequence of character (of size `block_size`) given any starting point"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "UXQ-JeOQZ6wR"
      },
      "outputs": [],
      "source": [
        "class CharDataset(Dataset):\n",
        "    def __init__(self, data, block_size):\n",
        "        chars = list(set(data))\n",
        "        data_size, vocab_size = len(data), len(chars)\n",
        "        rank_zero_info(\"data has %d characters, %d unique.\" % (data_size, vocab_size))\n",
        "\n",
        "        self.stoi = {ch: i for i, ch in enumerate(chars)}\n",
        "        self.itos = {i: ch for i, ch in enumerate(chars)}\n",
        "        self.block_size = block_size\n",
        "        self.vocab_size = vocab_size\n",
        "        self.data = data\n",
        "\n",
        "    def __len__(self):\n",
        "        return len(self.data) - self.block_size\n",
        "\n",
        "    def __getitem__(self, i):\n",
        "        chunk = self.data[i : i + self.block_size + 1]\n",
        "        dix = [self.stoi[s] for s in chunk]\n",
        "\n",
        "        # src and target are off by one, we want the model to predict the next word\n",
        "        x = torch.tensor(dix[:-1], dtype=torch.long)\n",
        "        y = torch.tensor(dix[1:], dtype=torch.long)\n",
        "        return x, y\n",
        "\n",
        "    def to_tokens(self, message, device):\n",
        "        return torch.tensor([self.stoi[s] for s in message], dtype=torch.long)[\n",
        "            None, ...\n",
        "        ].to(device)\n",
        "\n",
        "    def from_tokens(self, tokens):\n",
        "        return \"\".join([self.itos[int(i)] for i in tokens])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "oPyC2ig0Z86m"
      },
      "source": [
        "Now, let's plan ahead: how can we probe our model ? Given the training (guess the next character), a nice way is to sample the model given an initial bait. The predictions are then chained after the bait, and we can keep probing the model for predictions over a rolling window. Note that contrary to the training phase, this is sequential, we only predict one character ahead and then repeat"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "id": "LUsApc3NaDCP"
      },
      "outputs": [],
      "source": [
        "@torch.no_grad()\n",
        "def sample(model, x, steps, temperature=1.0, sample=False, top_k=None):\n",
        "    \"\"\"\n",
        "    take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in\n",
        "    the sequence, feeding the predictions back into the model each time. Clearly the sampling\n",
        "    has quadratic complexity unlike an RNN that is only linear, and has a finite context window\n",
        "    of block_size, unlike an RNN that has an infinite context window.\n",
        "    \"\"\"\n",
        "    block_size = model.get_block_size()\n",
        "    model.eval()\n",
        "\n",
        "    # CREDITS: https://github.com/karpathy/minGPT/blob/master/mingpt/utils.py\n",
        "    def top_k_logits(logits, k):\n",
        "        v, _ = torch.topk(logits, k)\n",
        "        out = logits.clone()\n",
        "        out[out < v[:, [-1]]] = -float(\"Inf\")\n",
        "        return out\n",
        "\n",
        "    for _ in range(steps):\n",
        "        x_cond = (\n",
        "            x if x.size(1) <= block_size else x[:, -block_size:]\n",
        "        )  # crop context if needed\n",
        "        logits = model(x_cond)\n",
        "\n",
        "        # pluck the logits at the final step and scale by temperature\n",
        "        logits = logits[:, -1, :] / temperature\n",
        "\n",
        "        # optionally crop probabilities to only the top k options\n",
        "        if top_k is not None:\n",
        "            logits = top_k_logits(logits, top_k)\n",
        "\n",
        "        # apply softmax to convert to probabilities\n",
        "        probs = F.softmax(logits, dim=-1)\n",
        "\n",
        "        # sample from the distribution or take the most likely\n",
        "        if sample:\n",
        "            ix = torch.multinomial(probs, num_samples=1)\n",
        "        else:\n",
        "            _, ix = torch.topk(probs, k=1, dim=-1)\n",
        "\n",
        "        # append to the sequence and continue\n",
        "        x = torch.cat((x, ix), dim=1)\n",
        "\n",
        "    return x[0]  # escape the batch dimension"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wn3-zIdIaa5Z"
      },
      "source": [
        "Ok, good to go, we're equipped ! Let's train a model. Feel free to alter the parameters to get a feel of what's right or wrong\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "O4iejUaQgQcE",
        "outputId": "ad4e0f5e-442f-45ad-98ad-7d97e25fb6e9"
      },
      "outputs": [],
      "source": [
        "seed_everything(42)\n",
        "REF_BATCH = 512\n",
        "BATCH = 32  # adjust depending on the available memory on your machine\n",
        "WORKERS = 2\n",
        "EPOCHS = 1\n",
        "BLOCK = 128\n",
        "WARMUP = 20\n",
        "LR = 6e-4\n",
        "LAYERS = 4\n",
        "\n",
        "if not os.path.exists(\"input.txt\"):\n",
        "    os.system(\n",
        "        \"wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\"\n",
        "    )\n",
        "\n",
        "text = open(\"input.txt\", \"r\").read()\n",
        "train_dataset = CharDataset(\n",
        "    text, BLOCK\n",
        ")  # one line of poem is roughly 50 characters\n",
        "random_sampler = RandomSampler(train_dataset)\n",
        "train_loader = DataLoader(\n",
        "    train_dataset,\n",
        "    sampler=random_sampler,\n",
        "    batch_size=BATCH,\n",
        "    num_workers=WORKERS,\n",
        "    pin_memory=True,\n",
        ")\n",
        "\n",
        "model = GPT(\n",
        "    vocab_size=train_dataset.vocab_size,\n",
        "    block_size=train_dataset.block_size,\n",
        "    attention=\"scaled_dot_product\",\n",
        "    warmup_tokens=REF_BATCH * WARMUP,\n",
        "    learning_rate=LR,\n",
        "    final_tokens=EPOCHS * len(train_dataset) * BLOCK,\n",
        "    n_layer=LAYERS\n",
        ")\n",
        "\n",
        "trainer = Trainer(\n",
        "    devices=1, accelerator=\"gpu\",\n",
        "    max_epochs=EPOCHS,\n",
        "    precision=16,\n",
        "    gradient_clip_val=1,\n",
        "    log_every_n_steps=1,\n",
        "    detect_anomaly=True,\n",
        "    accumulate_grad_batches=REF_BATCH // BATCH,\n",
        ")\n",
        "\n",
        "trainer.fit(model, train_loader)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bCST-B0REwOD"
      },
      "source": [
        "Alright, this worked ! Let's see what we got\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "w3CDPX9fEycb"
      },
      "outputs": [],
      "source": [
        "context = \"Friends of my soul\"  # Prime with something\n",
        "x = train_dataset.to_tokens(context, model.device)\n",
        "y = sample(model, x, steps=1000, temperature=1.0, sample=True, top_k=10)\n",
        "\n",
        "print(train_dataset.from_tokens(y))"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "authorship_tag": "ABX9TyPCTlvaFXBycBYZdtu3jSU7",
      "collapsed_sections": [],
      "include_colab_link": true,
      "name": "xformers_mingpt.ipynb",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3.8.0 ('xformers')",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.8.0"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}