Spaces:
Runtime error
Runtime error
File size: 37,167 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
{
"cells": [
{
"cell_type": "markdown",
"id": "e06e7b36-d1b0-4367-8ff0-68ff640649a6",
"metadata": {},
"source": [
"# Sparse Vision Transformers with xformers\n",
"\n",
"In this notebook, we will illustrate how one can use the functionality available in xformers to\n",
"quickly adapt an already existing Vision Transformer to use xformers efficient sparse kernels.\n",
"\n",
"In this notebook, you'll see:\n",
"- how to get **memory and speed improvements** on a standard ViT model by using xformers with 80% sparsity\n",
"- how to scale up a standard ViT model so that it can handle sequence **lengths larger than 10k**\n",
"\n",
"Let's start with a few imports. In this notebook, we will be using the `VisionTransformer` from timm"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0ea655b8-5e01-41c1-b064-37525fe3c931",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import copy\n",
"import torch\n",
"from torch import nn\n",
"from torch.utils import benchmark\n",
"\n",
"import xformers.components.attention.attention_patterns as AP\n",
"from xformers.components.attention.core import scaled_dot_product_attention\n",
"from xformers.components.attention._sputnik_sparse import SparseCS\n",
"\n",
"import timm\n",
"from timm.models.vision_transformer import VisionTransformer\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "ec7139ee-c701-423a-910b-51b7c16e4b4f",
"metadata": {},
"source": [
"To facilitate benchmarking and memory profiling, let's define a function that takes a generic callable and executes it, measuring the execution time and the GPU memory"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fef5fd04-5e83-4fb0-af21-379ab6d1f1fd",
"metadata": {},
"outputs": [],
"source": [
"def profile_model(fn, min_run_time=2):\n",
" torch.cuda.reset_peak_memory_stats()\n",
" torch.cuda.synchronize()\n",
" res = benchmark.Timer(\n",
" stmt='fn()',\n",
" globals={\"fn\": fn},\n",
" label=\"profile\",\n",
" sub_label=\"\",\n",
" description=\"\"\n",
" ).blocked_autorange(min_run_time=min_run_time)\n",
" torch.cuda.synchronize()\n",
" memory = torch.cuda.max_memory_allocated() / 2 ** 20\n",
" memory = f\"Memory used: {memory} MB\"\n",
" print(res)\n",
" print(memory)"
]
},
{
"cell_type": "markdown",
"id": "b384c152-0e62-41cb-9c1e-611e8e5115fa",
"metadata": {},
"source": [
"Now it comes the core of it. We will implement an `Attention` module following the same API and modules as timm's, but using our `scaled_dot_product_attention` function.\n",
"It is worth noting that the `scaled_dot_product_attention` from xformers supports both dense and sparse tensors with the same API, so it can be a drop-in replacement\n",
"for experimenting with both sparse and dense attention.\n",
"\n",
"Internally, `scaled_dot_product_attention` will dispatch to the sparse variants if the `attn_mask` is sparse, otherwise it will dispatch to the dense implementation.\n",
"\n",
"We provide support for both COO-sparse matrices (via PyTorch `sparse_coo_tensor`) and CSR matrices (via our custom implementation).\n",
"The CSR implementation is significantly faster and should be preferred at pretty-much all times."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1aaa3de6-4be6-4a5c-b8db-6cb6bd712984",
"metadata": {},
"outputs": [],
"source": [
"# almost drop-in replacement for timm attention\n",
"# but using the sparsity-aware scaled_dot_product_attention from xformers\n",
"class Attention(torch.nn.Module):\n",
" def __init__(\n",
" self,\n",
" dim,\n",
" num_heads=8,\n",
" qkv_bias=False,\n",
" attn_drop=0.0,\n",
" proj_drop=0.0,\n",
" attn_mask=None,\n",
" ):\n",
" super().__init__()\n",
" self.num_heads = num_heads\n",
"\n",
" self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias)\n",
" self.attn_drop = torch.nn.Dropout(attn_drop)\n",
" self.proj = torch.nn.Linear(dim, dim)\n",
" self.proj_drop = torch.nn.Dropout(proj_drop)\n",
" self.attn_mask = attn_mask\n",
"\n",
" def forward(self, x):\n",
" B, N, C = x.shape\n",
" qkv = (\n",
" self.qkv(x)\n",
" .reshape(B, N, 3, self.num_heads, C // self.num_heads)\n",
" .permute(2, 0, 3, 1, 4)\n",
" )\n",
"\n",
" qkv = qkv.flatten(1, 2)\n",
"\n",
" q, k, v = qkv.unbind()\n",
"\n",
" x = scaled_dot_product_attention(q, k, v, self.attn_mask, dropout=self.attn_drop)\n",
" x = x.reshape(B, self.num_heads, N, C // self.num_heads)\n",
"\n",
" x = x.transpose(1, 2).reshape(B, N, C)\n",
" x = self.proj(x)\n",
" x = self.proj_drop(x)\n",
" return x"
]
},
{
"cell_type": "markdown",
"id": "6a853593-b3df-4526-871f-9967e1942394",
"metadata": {},
"source": [
"Let's write a function that given a model, will replace all instances of `timm.models.vision_transformer.Attention` with our own implementation, which leverages `scaled_dot_product_attention` from xformers"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fccb2a4a-b864-452c-8649-7138855709af",
"metadata": {},
"outputs": [],
"source": [
"def replace_attn_with_xformers_one(module, att_mask):\n",
" module_output = module\n",
" if isinstance(module, timm.models.vision_transformer.Attention):\n",
" qkv = module.qkv\n",
" dim = qkv.weight.shape[1] * module.num_heads\n",
" module_output = Attention(dim, module.num_heads, attn_mask=att_mask)\n",
" for name, child in module.named_children():\n",
" module_output.add_module(name, replace_attn_with_xformers_one(child, att_mask))\n",
" del module\n",
" return module_output"
]
},
{
"cell_type": "markdown",
"id": "0ece835a-a715-4f44-94d4-0fdeb1bf1386",
"metadata": {},
"source": [
"Now it's time to create our Vision Transformer. Nothing unusual here. Note that we will be keeping a copy of the model, which will be the model to use sparse self-attention"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "16934f00-841b-4bc0-a140-8c8ab7aada34",
"metadata": {},
"outputs": [],
"source": [
"img_size = 224\n",
"patch_size = 16\n",
"\n",
"model = VisionTransformer(img_size=img_size, patch_size=patch_size,\n",
" embed_dim=96, depth=8, num_heads=8, mlp_ratio=3.,\n",
" qkv_bias=False, norm_layer=nn.LayerNorm).cuda()\n",
"\n",
"model_sparse = copy.deepcopy(model)"
]
},
{
"cell_type": "markdown",
"id": "0620e39a-1db5-407f-ad5d-8ddafcf9a8b9",
"metadata": {},
"source": [
"What comes next is about creating a sparsity pattern that we will be using for our model.\n",
"\n",
"You can refer to the `2d_attention` tutorial for further information on how to build custom attention patterns with xformers"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ffe7f787-3398-47ba-86e6-b8d333713740",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sequence length: 14x14 = 196\n",
"Sparsity: 0.8061789721250534, nnz=1152\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAALfElEQVR4nO3dX6xlBXXH8e+vM8A4+AdoGyIMKTxQDCEIZkJRG9s4NIxIGB/6AJEGqsm8tBWNiYHwYPrWRGM0qdEQREkl8IBYCVFhihrTpFIHmFJgEChaGBgcWlIxEBkmrj6cQzLczIC5e599z7C+n+Tmnr3Pvnete5kf+885+65UFZLe/H5vrRuQNA3DLjVh2KUmDLvUhGGXmlg/ZbGjc0xt4NgpSy6FPz77pUFf/+gDG4/I2preb3iR/fVyDvVcpnzp7e05of4kWyartyzufGbXoK+/8KRzjsjamt49dTcv1POHDLuH8VIThl1qwrBLTQwKe5KtSX6W5PEkV4/VlKTxrTrsSdYBXwY+BJwJXJbkzLEakzSuIXv284DHq+qJqtoP3AJsG6ctSWMbEvaTgacOWt4zX/caSbYn2Zlk5yu8PKCcpCEWfoGuqq6rqs1Vtfkojll0OUmHMSTsTwOnHLS8ab5O0hIaEvafAqcnOS3J0cClwO3jtCVpbKt+b3xVHUjyt8CdwDrghqp6aLTOJI1q0I0wVfVd4Lsj9SJpgXwHndSEYZeamPR+9q68TVTLwD271IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9SEYZeaMOxSE0OmuJ6S5IdJHk7yUJKrxmxM0riG/MHJA8Cnq+q+JG8D7k2yo6oeHqk3SSNa9Z69qvZW1X3zx78GdnOIKa6SlsMof0o6yanAucA9h3huO7AdYAMbxygnaRUGX6BL8lbgW8Anq+qFlc87sllaDoPCnuQoZkG/qapuG6clSYsw5Gp8gK8Bu6vqC+O1JGkRhuzZ3w/8FfDBJLvmHxeN1JekkQ2Zz/6vQEbsRdIC+Q46qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9SEYZeaMOxSE4ZdasKwS00YdqkJwy41YdilJgy71IRhl5ow7FITY4x/Wpfk/iR3jNGQpMUYY89+FbMJrpKW2NBZb5uADwPXj9OOpEUZumf/IvAZ4LeH2yDJ9iQ7k+x8hZcHlpO0WkMGO14M7Kuqe19vO0c2S8th6GDHS5L8AriF2YDHb47SlaTRrTrsVXVNVW2qqlOBS4EfVNXlo3UmaVS+zi41seqRzQerqh8BPxrje0laDPfsUhOGXWpilMN46XDufGbXqr/2wpPOOWJrLyP37FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSa8xfUIMORWzbWuvZa3ir4Zb1Mdwj271IRhl5ow7FIThl1qYuhgx+OS3JrkkSS7k7x3rMYkjWvo1fgvAd+vqr9McjSwcYSeJC3AqsOe5B3AB4ArAapqP7B/nLYkjW3IYfxpwHPA15Pcn+T6JMeu3MiRzdJyGBL29cB7gK9U1bnAi8DVKzdyZLO0HIaEfQ+wp6rumS/fyiz8kpbQkJHNzwJPJTljvmoL8PAoXUka3dCr8X8H3DS/Ev8E8NfDW5K0CIPCXlW7gM3jtCJpkXwHndSEYZeaSFVNVmzzuzfUv995ymT1pG7Ou/Apdv7Hb3Ko59yzS00YdqkJwy41YdilJgy71IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOTzmd/9IGNzsxehbWczz7Ukfrf+0idS/9o/e9hn3PPLjVh2KUmDLvUxNCRzZ9K8lCSB5PcnGTDWI1JGteqw57kZOATwOaqOgtYB1w6VmOSxjX0MH498JYk65nNZn9meEuSFmHIrLengc8DTwJ7gV9V1V0rt3Nks7QchhzGHw9sYzan/STg2CSXr9zOkc3SchhyGH8B8POqeq6qXgFuA943TluSxjYk7E8C5yfZmCTMRjbvHqctSWMbcs5+D3ArcB/wn/Pvdd1IfUka2dCRzZ8FPjtSL5IWyHfQSU0YdqmJSW9x1eoMuV3ySL1Vc629GX9u9+xSE4ZdasKwS00YdqkJwy41YdilJgy71IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNvGHYk9yQZF+SBw9ad0KSHUkem38+frFtShrqd9mzfwPYumLd1cDdVXU6cPd8WdISe8OwV9WPgedXrN4G3Dh/fCPwkXHbkjS21f4p6ROrau/88bPAiYfbMMl2YDvABjauspykoQZfoKuqAup1nndks7QEVhv2XyZ5J8D8877xWpK0CKsN++3AFfPHVwDfGacdSYvyu7z0djPwb8AZSfYk+TjwD8BfJHkMuGC+LGmJveEFuqq67DBPbRm5F0kL5DvopCYMu9SEI5sn4NhkLQP37FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9SE97NPwPvRtQzcs0tNGHapCcMuNbHakc2fS/JIkgeSfDvJcQvtUtJgqx3ZvAM4q6rOBh4Frhm5L0kjW9XI5qq6q6oOzBd/AmxaQG+SRjTGOfvHgO+N8H0kLdCg19mTXAscAG56nW2czy4tgVWHPcmVwMXAlvmM9kOqquuA6wDenhMOu52kxVpV2JNsBT4D/FlVvTRuS5IWYbUjm/8ReBuwI8muJF9dcJ+SBlrtyOavLaAXSQvkO+ikJgy71IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9REXucPw45fLHkO+O/X2eQPgP+ZqB1rW/vNWPuPquoPD/XEpGF/I0l2VtVma1vb2uPzMF5qwrBLTSxb2K+ztrWtvRhLdc4uaXGWbc8uaUEMu9TEUoQ9ydYkP0vyeJKrJ6x7SpIfJnk4yUNJrpqq9kE9rEtyf5I7Jq57XJJbkzySZHeS905Y+1Pz3/eDSW5OsmHB9W5Isi/JgwetOyHJjiSPzT8fP2Htz81/7w8k+XaS4xZRe6U1D3uSdcCXgQ8BZwKXJTlzovIHgE9X1ZnA+cDfTFj7VVcBuyeuCfAl4PtV9S7g3VP1kORk4BPA5qo6C1gHXLrgst8Atq5YdzVwd1WdDtw9X56q9g7grKo6G3gUuGZBtV9jzcMOnAc8XlVPVNV+4BZg2xSFq2pvVd03f/xrZv/gT56iNkCSTcCHgeunqjmv+w7gA8wHdFbV/qr6vwlbWA+8Jcl6YCPwzCKLVdWPgedXrN4G3Dh/fCPwkalqV9VdVXVgvvgTYNMiaq+0DGE/GXjqoOU9TBi4VyU5FTgXuGfCsl9kNuf+txPWBDgNeA74+vwU4vokx05RuKqeBj4PPAnsBX5VVXdNUXuFE6tq7/zxs8CJa9ADwMeA701RaBnCvuaSvBX4FvDJqnphopoXA/uq6t4p6q2wHngP8JWqOhd4kcUdxr7G/Nx4G7P/4ZwEHJvk8ilqH07NXn+e/DXoJNcyO5W8aYp6yxD2p4FTDlreNF83iSRHMQv6TVV121R1gfcDlyT5BbNTlw8m+eZEtfcAe6rq1aOYW5mFfwoXAD+vqueq6hXgNuB9E9U+2C+TvBNg/nnflMWTXAlcDHy0JnqzyzKE/afA6UlOS3I0s4s1t09ROEmYnbfurqovTFHzVVV1TVVtqqpTmf3MP6iqSfZwVfUs8FSSM+artgAPT1Gb2eH7+Uk2zn//W1ibC5S3A1fMH18BfGeqwkm2Mjt9u6SqXpqqLlW15h/ARcyuSv4XcO2Edf+U2eHbA8Cu+cdFa/Dz/zlwx8Q1zwF2zn/2fwaOn7D23wOPAA8C/wQcs+B6NzO7PvAKs6OajwO/z+wq/GPAvwAnTFj7cWbXqV79N/fVKX7vvl1WamIZDuMlTcCwS00YdqkJwy41YdilJgy71IRhl5r4f997Y5TiItSwAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"H, W = img_size // patch_size, img_size // patch_size\n",
"print(f\"Sequence length: {H}x{W} = {H * W}\")\n",
"\n",
"axial_pattern = AP.axial_2d_pattern(H, W)\n",
"loc_2d_dist = AP.local_2d_pattern(H, W, distance=2, p=2.0)\n",
"rand_pattern = torch.rand((H * W) ** 2).reshape(H * W, H * W) > 0.99\n",
"\n",
"gaus_2d_dist = AP.local_2d_gausian_distribution(H, W, sigma=5)\n",
"sparsity = 0.97\n",
"num_non_zeros = int((H * W) ** 2 * (1 - sparsity))\n",
"random_gaus_2d_pattern = AP.random_pattern_from_probability_matrix(gaus_2d_dist, num_non_zeros)\n",
"\n",
"\n",
"t_mask = axial_pattern | loc_2d_dist | rand_pattern | random_gaus_2d_pattern\n",
"\n",
"# and let's not forget to add a global attention for the cls_token\n",
"mask = torch.ones((H * W + 1, H * W + 1), dtype=torch.bool)\n",
"mask[1:, 1:] = t_mask\n",
"\n",
"print(f\"Sparsity: {1 - mask.float().mean().item()}, nnz={num_non_zeros}\")\n",
"\n",
"plt.imshow(mask[H * W // 2 + W // 2][1:].reshape(H, W))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "885350c5-3f16-49cd-89c6-55c53fb3d77e",
"metadata": {},
"source": [
"From the print just above, we can see that the full `attn_mask` has a sparsity level of around 80%.\n",
"\n",
"Once we are happy with the sparsity pattern, the next step is to create the sparse matrix that holds our sparsity pattern.\n",
"\n",
"Everything is handled by `SparseCS` class.\n",
"\n",
"**Note: the optimized kernels require that the total number of nonzero elements in the full `attn_mask` to be a multiple of 4. This is handled by default in the implementation (by removing elements until the number of non zeros is a multiple of 4)**"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ef202f12-7622-42d3-bbf6-01fa964c5b21",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.8061789791027855\n"
]
}
],
"source": [
"mask = SparseCS(mask, torch.device(\"cuda\"))\n",
"print(1 - mask.values.shape[1] / (mask.shape[0] * mask.shape[1]))"
]
},
{
"cell_type": "markdown",
"id": "ce894e15-97a1-4490-98a9-4c4d039e4cc3",
"metadata": {},
"source": [
"Now we are ready to replace the dense attentions with with sparse versions which leverage the sparsity pattern that we have just created"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "232d065e-afc5-4d7e-88ee-7e7fad875c07",
"metadata": {},
"outputs": [],
"source": [
"model_sparse = replace_attn_with_xformers_one(model_sparse, mask)"
]
},
{
"cell_type": "markdown",
"id": "0a809363-a1c4-4bda-ad0a-610c078d7e95",
"metadata": {},
"source": [
"Let's new create an input tensor and benchmark both the sparse and the dense versions"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "62c6d031-f4a1-4b89-a388-3b8f2f3c17a8",
"metadata": {},
"outputs": [],
"source": [
"i = torch.rand(64, 3, img_size, img_size).cuda()"
]
},
{
"cell_type": "markdown",
"id": "3b420967-81ae-4c2a-ae20-7690c575c392",
"metadata": {},
"source": [
"## Profiling the default (dense) model"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f3f150fe-5b2c-49b2-92a6-285a6f67205e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Forward only\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf375a400>\n",
"profile\n",
" Median: 22.70 ms\n",
" IQR: 0.09 ms (22.68 to 22.77)\n",
" 88 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 1790.81689453125 MB\n",
"\n",
"Forward + backward\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf0464760>\n",
"profile\n",
" Median: 77.05 ms\n",
" 3 measurements, 10 runs per measurement, 1 thread\n",
"Memory used: 1975.78173828125 MB\n"
]
}
],
"source": [
"print(\"Forward only\")\n",
"profile_model(lambda : model(i))\n",
"print(\"\")\n",
"print(\"Forward + backward\")\n",
"profile_model(lambda : model(i).sum().backward())"
]
},
{
"cell_type": "markdown",
"id": "1959b60b-aa09-4823-be4a-32ff24910d28",
"metadata": {},
"source": [
"## Profiling the sparsity-aware model"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "fab86e1c-fff6-4457-aaee-9ad8303ee2df",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Forward only\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf0406460>\n",
"profile\n",
" Median: 16.38 ms\n",
" IQR: 0.05 ms (16.37 to 16.42)\n",
" 13 measurements, 10 runs per measurement, 1 thread\n",
"Memory used: 822.93701171875 MB\n",
"\n",
"Forward + backward\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf375a040>\n",
"profile\n",
" Median: 53.41 ms\n",
" IQR: 0.01 ms (53.40 to 53.41)\n",
" 4 measurements, 10 runs per measurement, 1 thread\n",
"Memory used: 835.51025390625 MB\n"
]
}
],
"source": [
"print(\"Forward only\")\n",
"profile_model(lambda : model_sparse(i))\n",
"print(\"\")\n",
"print(\"Forward + backward\")\n",
"profile_model(lambda : model_sparse(i).sum().backward())"
]
},
{
"cell_type": "markdown",
"id": "65f51323-0ab6-4af2-b731-dad87a65789d",
"metadata": {},
"source": [
"This shows that not only the sparse model is ~30% faster, but it also uses less than half the memory compared to the dense counterpart. Great!"
]
},
{
"cell_type": "markdown",
"id": "f9654e78-daa2-4023-848e-4c4ae8b6e500",
"metadata": {},
"source": [
"# Scaling ViT to sequence lengths of size larger than 10k\n",
"\n",
"Getting speed-ups for training / inference on standard workloads thanks to sparsity is nice, but by leveraging the memory savings from sparse computations we can actually easily scale up ViT to sequence lengths which are much larger than what was originally possible.\n",
"\n",
"Let's get back to the original model, but this time scale it up so that the sequence length is `112 x 112`, and use a 99.5% sparsity pattern."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a6cc8a1e-18f1-423c-af1e-2f7e88d3b332",
"metadata": {},
"outputs": [],
"source": [
"img_size = 224\n",
"patch_size = 2\n",
"\n",
"model_sparse = VisionTransformer(img_size=img_size, patch_size=patch_size,\n",
" embed_dim=96, depth=8, num_heads=8, mlp_ratio=3.,\n",
" qkv_bias=False, norm_layer=nn.LayerNorm).cuda()"
]
},
{
"cell_type": "markdown",
"id": "1922754f-9a0b-42b3-9819-4a729c8611b0",
"metadata": {},
"source": [
"Everything was the same as before, with the difference that the patch size is now `2x2`, which means that the sequence length is `112x112`, which is much larger than what has been used so far.\n",
"\n",
"Let's create a sparsity pattern to have roughly 99.5% sparsity"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a0ff06e2-9485-4e80-b18c-88b1531d904c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sequence length: 112x112 = 12544\n",
"Sparsity: 0.9938480411656201, nnz=786759\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD7CAYAAABqkiE2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkW0lEQVR4nO3deXxU5bnA8d8zS2ayryQEQtgSVmUzVVCrWGtdrla9t4tLK7Uq3LpXrVVv61Lbe2urtva2WlHx2rqhiIpatUpta6tQRPY9QEISyAaBhOwz894/ZsQACUlmyZnJPN/PJ5/MnDnLwwl58p53FWMMSqn4ZbM6AKWUtTQJKBXnNAkoFec0CSgV5zQJKBXnNAkoFecikgRE5BwR2SIipSJyRySuoZQKDwl3PwERsQNbgbOASmAFcKkxZmNYL6SUCgtHBM55IlBqjNkBICIvAhcCPSaBBHEZN8kRCEUp9ZkmGuqNMUOO3B6JJDAcqOjyvhI46cidRGQuMBfATRInyZkRCEUp9Zn3zaLy7rZbVjFojJlvjCkxxpQ4cVkVhlJxLxJJoAoY0eV9QWCbUioKRSIJrACKRWS0iCQAlwBLInAdpVQYhL1OwBjjEZHrgXcBO7DAGLMh3NdRSoVHJCoGMcb8CfhTJM6tlAov7TGoVJzTJKBUnIvI44Dqnu/06ewf42bIsnq8m7ZZHY5SgJYEBo4I278rvPWTB9lz5lGdtpSyjJYEBooxpK5yMzt5Hrk7O62ORqlDNAkMoKG/WY78VjBer9WhKHWIJoGB5PNifFYHodThtE5AqTinSUCpOKdJQKk4p0lAqTinSUCpOKdJQKk4p0lAqTinSUCpOKdJQKk4p0lAqTinScBC4nAgzgQQsTqUfhNngj92FfM0CVhEnAmU3f0Fql4qwnfaNKvD6RfH6JFsfeJ4tvx2Ko6heVaHo0KkScAiYreRNG0fz01fQPPQINZdsNmxJSdjc7vDH1wvfGlJ3Hrin7n0xOWYlKQBv74KLx1FaBFfezuZv05h3tCbyfqoEk9/T1Ayifq729m7I5Pxd67H19wciTC7JTurePFH5yFeQ/IenUg61mkSsIoxOP6ykjTofwIAOrLc3D/hJX7pPhtxDuyP0dvYSNLi5QDoyOjYp0kgRiWuLON/vj+HhMZOfAd3Wx2OimGaBGKUt64O9xt1AIR3cXkVNBHsOTkAePfuA19szCClFYNKhYmjYDhVT+Rw4I+p2ItGWR1On2kSUCpcHHam5lUxc0gZDHA9TShiJ1Klopx3dzW1NxRTYxNs22NnXQlNAkqFiWlvh0/WA7HVaqKPA0rFOS0JqKjhGFWINycNW3kN3ro6q8OJG0GXBERkhIh8ICIbRWSDiNwU2J4lIu+JyLbA98zwhasGs803D+M7z71F7UVFVocSV0J5HPAAtxpjJgEzgetEZBJwB7DUGFMMLA28V6pX9jZhU9swbB1WRxJfgk4Cxpg9xphPA6+bgE3AcOBC4JnAbs8AF4UYo4oTRQ9u5ZOLishevN7qUOJKWOoERGQUMB1YDuQZY/YEPqoGuh1rKiJzgbkAbnQkmgJv/V6o32t1GN2yTZtEW14SSWsr8eyptjqcsAq5dUBEUoBXgJuNMY1dPzPGGHro1WqMmW+MKTHGlDgJYiitUgNEHA623ubivseepP6s0VaHE3YhJQERceJPAM8ZYxYHNteISH7g83ygNrQQlbKW8RnslW4erjgbd0NsjAfoj6AfB0REgKeATcaYh7t8tASYA/w88P31kCJUymo+L2PvX0uH20Vi4+pBN2ArlDqBU4BvA+tEZHVg2134f/lfEpGrgHLgGyFFqAaOzY7njGm05DrJ+rACT2WV1RFFDV9zMwzgxC0DKegkYIz5B9DTDJlnBnteZR2b20XzrQf43cTnuem2G0jWJBAXtNuwOsR0emhYNYSr117Bvol29l05C0fBcKvDUhGm3YbVIaazg9H3rMCWnUXCSw3cVfgmt9dci0tLBIOaJoEwsE2bxO7ZGWRt7iThnRVWhxMS4/Fgmg6y6cOpXFI4j/G7m2NqRJzqP00CYbB7dgb/vO1hprx/HcXvWB1N6HwtLYy6+1/+1zEyRZYKniaBMMja3MmU968j86NBtCKP/vLHDU0CYZDwzopBUQJQ8UlbB5SKc5oElIpzmgSUinOaBJSKc5oElIpzmgRU7BLxf6mQaBOhikn2nGy23T4Ob6KPiQ/twVO2y+qQYpaWBFRMktQULjv779z/lUV4c9KsDiemaUlAxSRf/T7eefA03kqA3LKtaP/G4GkSUDHJ19RExh8/BtAEECJ9HFAqzmlJQMU2EWxJ/inrfS0tYAbbDICRpyUBFdMchQVsf7KI7U8W4SgssDqcmKQlARXTTJKbr01YBcDqpPEWRxObNAmomGbKq1j2gy8A4CrfZHE0sUmTQBjYkpKwZWVimlvwNjQc2m5PS0PSUvEdaMTX1GRhhP1nHzIESXDira3HdEbvCqG+lhac76/0v7Y4llildQJhsO8/plL8eg3bb51w2PZd3zuOSUt2U33F8RZFFhxbaiqbHxxB6ktteE+aZHU4KsI0CYSBJwnOSl9PZ/rhf4s6Uwxnpa2nM9WiwIIkImRmHeSLmdvwuu097+dMwDF6JI4RBWDreT8V3cREQZNKmmSZkyR21ytxDM2jc2w+jpoDeEt3fr59VCGdw7NwltfF1mo+Nju2ScX4UhKwbyzD29jY7W4yfTIZv93Dlvpchs1rwFNdM8CBqv543yxaaYwpOXK71gmEgae6BqmuOarnmqdsF1K2C48lUYXA58W3fjMQ6I1ns2MfOxIcdnw7dmHa2/372YVcVxO73emWhapCp0lA9cqRn0fz73yMTatl97wxmDX+WnhZX8q274wlpdODt36vxVGqYGkSUL3z+Wj32mn1Og/f3NYGgRJDd+zZWfjGDMfWcPCwxyQVXbRiUPXKU1NH1rUe9s/JwGzc3ufjGs4ex7ef/ROb7sxGHPr3JlrpTybG2bOz6DxuJI6GVnzrtkSm77zPi2dnef9jazd8enAkctCB8VlTAW3PzqJz0kgcjW341m7WsQXdCLkkICJ2EVklIm8G3o8WkeUiUioiC0VkEC3LE30OnlrENU8spuJeOzaXy+pwDpP69jo2XzSMCfdvs2xFo+ZZRVz15Gvsvg9siYmWxBDtwvE4cBPQtb/mA8CvjDFFQANwVRiuoXrgaPayqLaE5upkoqG5tytfSwueikpLKw2dzR4W1Z5AY3Uq+LRPYXdC6icgIgXAM8DPgFuAC4A6YKgxxiMis4B7jTFnH+s8sd5PwEriTMCWkQ6dHXj3H7A6nKij9+dzkeon8GvgduCzPnHZwH5jzGdN45XA8O4OFJG5wFwAN0n9vrB93FgOTM0htfQgZtWGfh8/WJjODrx1dVaHERTblAk0Tsggff0+vBu3RuQasXx/BkrQjwMicj5Qa4xZGczxxpj5xpgSY0yJk/4/y1Z8NY8XHnqIrVenBHN5FQW2X5bJwgcfZMc3c6wOJa6FUhI4BfiqiJwHuIE04BEgQ0QcgdJAARCR/rIpVT7mbLmclO3aZz3a2ceNZe/MXNJ2tGL7x+pD21PK4NtbLie1PLrqMuJNWMYOiMhs4DZjzPki8jLwijHmRRH5PbDWGPPosY4Ppk5AHA4kIQHT6Ynqoa4Kaq8/mT/d/gtO+eBGir+z6lAz3aGfYUcHxhNznatjTk91ApHoLPRD4BYRKcVfR/BUBK6B8XjwtbRoAugjM2sqtdeeDDOnDPi108o9nPPpNaSsdR/WTn/oZ6gJwFJh6SxkjPkr8NfA6x3AieE4rwqfnRcmseZbv2baH29i9LKBvbb7zRXkv+PEeHVy8GikPQbjRPZ6w/R/Xk3W+t4f/8SZwIGvz6A1x8bwJZWhL/FljJbYopgmgTiR/uwy0p+TPnWbtSUnkv+f27m38A1u3H4DLl3nb1DTJBBP+lgJbNra2fLOZC4suJEJ5Y1hm7vPnDKNijOTyP3Ug/vNf4XprCpUmgTUUXxtbRT890f+12E8b9VpSayf91uK3prHuDfDeGIVEk0CFhNnAnXfPYHm4TDmuTq8W0oBsGdmUnH1RNqy/X+93fuEEU9txrt3n5XhhiRvZQfFr36PoR9Jn48RZwJ1V57AwREw9oW9EetZGM80CVjMlugm/9IyHh69iKtXfp/ELYEPcjK5cs473JK1A4D/bRjJ269/AWI4CTj//AnFf+7fMeJ2kfPNChYVvci3V99K8sbIxBbPNAlYzNfaRvXCyVww/DbGbq77fJ7Cfft5+g/n8FiOvyTg2icU1vc8i09IbHbqrzmR/RMMxc83Y1asO+xje0Y65ddOxpNsKPp9BZ6KysjE0Q3T1k79SyM4Z8QPGLtpr65AHAE627BCnAnUvjKapdOf5uwf3UrmMx8f9rlj5AhKluzgxOTt/Oayr8O/1vVwJhXNdLZh1SPj6cT1YianrLiNkav2HVUZ6Nu3nyXzT2dx4ukUVuyIvdmT1TFpElBgDGnPLyON7lsDfE1N5P7O31rQawIQOXTOPpG+9V1QkaMTjaqwkRMms3XBDHb9eBY2t7vX/fd/exY7n59C0yUzByA61RNNAlFEHI7+z8orgjgTomIZsJaCZF6d/SiFp+9CEnqfWnLvFFj9xSfYe1zfmwxV+OnjQJSwpaay7Z7JkN9O8QOt/plx+8DMmkL5zT7YnMKo+1da2kc/dfUervqfm0mq85HcUt3r/mNebeGUspsZtfLgAESneqJJIEqIK4GSWVv5bt6HPJBzRZ9/MC3D3Lx04iPMS70ccTosTQKe8gpy5lcA0JenfPloDbkf9f384nIhIvja27UeIYw0CUQJ34Emqv97KvekjSNzw44+t4enL69i7o9uJqnWg6+tLJIhWsqWmsqWn00ipbCRYT+1Yz5Zb3VIg8agTwK2pCQkwYnvYHNUT15hOjtwvbUCF/SrQ4ynopL0Zweu845VJMHJhOMruG7EX3go61s4ez9E9dHgrhi02dlx11RsryXRcv4Mq6NRIfAdaKT9/nweuO0K3Kv6vxqS6tngTgJAZ2E7d49cQmum9bXnPbFnpGMfMsRfy38kmx17Tjb27KzP2+DjkPF4cPxlJYmv/UunEA+zwZ0EfF7GP9zG7dddS+570Tkxhi0piU2/GEfCIhvemZOP+tw+ppC6/8um6qk8HIUFFkSoBrtBXyfgW70R1+o+9HSzit1O5tBG/j1vJU8nF3JUWSDByWn5pRz0uqhwDo1cGDnZSGIivrp6/5LjIbC53diG5GDa2qPmr/ahmFpbLV0WLRoN7pJADPA1t5B3t50/XnMBictLj/rc7NjFuuuPp+zGYnwVuyMSgzgcbL63iOLXqmk+J/TZiFu/dDyjF9ex6f7RSJQsktpy1hTGvlrDpvvHdv/YFcc0CYSBPSMd+7ix2PNyj7mfY2ief7+0tM83+rz4Vm/E9uEqvA0NRx3ja2tDPl4Dy9Zi2tvDHfrnUjuZmbKdpuEO7MVjsCX1f2m4z3hdNqanlONIi57JRb0uoSRlJ7bUTqtDiTqaBMKg7uJJfHnxKrbdOrbnnUTY8oPRfHnxKuovPvrZ30rG42HCT/fz1NUX0fGlA8x4eRutpwcfY+pft/LyFWdRfG8TpiM6EkHa0q08/+1zGX/fAZ35+AiDvk5gIBg7pNtb8DmO3YvN2CHF3oaxMPU6hg/DNyQDqao77HldOj3Y2j3Y7T6yHM00jXCQOGUCbK/A19zcr2t4GxpgRUPQE4A4Ro7Al5GC7KrutnQUjFBjGsy0JBAGua9sZtHXZzPhoWO0QBjDhAcrePXrpzHktQjNENQHpd8byZyFb1N1efGhbeJwsPHuXP7jmaXYlmby7tWnknBxLac8u5qOkyYMbIA2OxvvzOfiF//GvvPGD+y145SWBMLA29AADQ29zszrqazyL9ZuIVunsLszE9uRzSUdNqo6Mkmt8mLbsJO9+8dQnZOO+CLXR98xooDOEdk4d9X7702AdAi1nWnY9M/2gNDpxeKMPScbMtOhbi/e/QcObXcMzcOkJGH21OJracExLB9cCfh2V4fcZNiT8vtO5jeXP8H3F1xzaIpzwF/BmpqMqanH19QUkWvHI51eLEbZkpLwTh8HxmD/dEuffyEdBcNpGz8UV+WBQ9OYA/428m7ayT3VNYe/r9rtn9tg+kR8SQ6cq7bjbWwM7R9zBOdBWNo0GccRVQ7emlqoFWxTJuDJTsK1blfQ/Q3s2Vl0TBmFY387ZvVGHX3YDa0TiHIyqoCp/7uGoke2IAX5fT5u90Uj+dkT89l8fXbQ17ZlZsID+7josffpnDIm6PP0ZMTj61l/wXCGLTh64lJJSGD7nU5umf8cB844RqtLL5pnFfG9xxdRc68XW2JiKOEOWloSiHLS1sHSynF0eByMbD/Q+wEBrv0+Hq+djbsmhDETNmFM6l5OcJfxqjP8fy+8jY3QU+nCZ/DuSeLpPafibAq+csDZ7OGPe2axf3caQ32f19o4RhVy8PihJFUcxLc6vhczCCkJiEgG8CRwHP55JL4LbAEWAqOAMuAbxpjwtPPEIU9ZBUPn+DsXefbv7/NxGS+voubdNEa2rAnrUmIDxXR2MP6ejbQkOHEfWNOnSUq64/hwLR3/kc7Ejs14uzxK7T6/gGdve4jz372RcfPCE3OsCrUk8AjwjjHmayKSACQBdwFLjTE/F5E7gDuAH4Z4nfjl8wbVVm7aw9Bvv72dt1cfz/KhheQ2tA14MglHHYTxeLodK5BU6+OHZf9OUnkQMxPY7HhmT6M9y0H6P8qOqk+JNUG3DohIOrAaGGO6nEREtgCzjTF7RCQf+Ksx5pgNvto6EL1sSUlgt+NrbgHf4GmzE4cDW1ISpqOj360fttRUWl/J5idFr3H3DdfgemtFhKIMr0i0DowG6oCnRWQqsBK4CcgzxuwJ7FMN5HV3sIjMBeYCuAm+n7qKLF9LS4+f2XOyafhKMY5WQ8rba8LWlOg9YwYHRrkY8o8avNt2hOWcRzIeT/AlDa+XyjX5XN9yKfl7IzieY4CEUtvjAGYAjxljpgPN+Iv+hwRKCN0WNYwx840xJcaYEifRMdJM9Y9nXAG33fs8x9+1BltO8K0Qh7HZ2TXPw6v3/ZLa2d3+/bCcr6WFortWMvySnbA89pdkC6UkUAlUGmOWB94vwp8EakQkv8vjQG2oQaro5Kg/yG3/+Aa2/Q7Gt/ZjyfCZU6g5MYUhq1qxfbjq8M+MD9fKFM6yf4/8cutH/HWcXULDuATy/7bvsGngTWcHxvrwwiLoJGCMqRaRChEZb4zZApwJbAx8zQF+Hvj+elgiVVHHu3U74+c6MD6Dtx/1BeXnprDm6keYtPAGij484kNjGPbQcsQmGK/FdRAi7PqWl0/PeIjTuZW8tdaGEymhtg7cADwXaBnYAVyJ/xHjJRG5CigHvhHiNVQYdX6lhJoTEhj+9xbkn6tDPl8wMzhnr/cy+a9zyVnVw5yJPi+ml6YIe1oatd+cjNcl5L9c6u9leKz9J42j4vwc0sp8pCxa0bdKTmNI+ziRGVxL4dbBO/w4pCRgjFkNHFXbiL9UoKJQ2VftbLv4txznvJ7Cf1oTQ8rLy0lZFNpCpJKTxQXX/42JiVUsWHYB9JIE9s3IYukNv+Tf1lyJvO7AtPetlJH76EfkPja4F03VHoNxJu8joShhHoWfWjzrYoi/VOZAIy+8fjpeF4yrqeh1Dsn0rc2c9Mb3Sd/swHRu7+fFoisBNH1zJvsm2Rj1ZhNmRegVkzqKUKlYIsLOF45n9alPcsp/30zuo31fx01HEUaBA5fPpH6aMPr1Vmz/WG11OD0Sl4vquSfQkm8oeqbusFGIymLGkPF2MsfvvpGxa3ruw9EfOopwoIhQf147Gy77DXUzortzlC3RTdE3tvL6ZQ/RUpRpdTjqCJnPfEzRLcvCUrELWhIYOMaQu8TFlJ03MnJF/+bsG2i+1jZ2PjuJC0fdiudcH7YzZjLu8dqI9d5T1tIkMIBSFy4jdaHVUfTOtLeT8/jH5OXlMuKNJq7I+Sf3vHU19m1WR6YiQZOA6pFpOsjKx6fxccZ0RpTuit5VnFRINAmoHvlaWshesAzEhqe/IwhtdjC+qGteCzsREFtMj7DUikHVI3taGjt+PpOtT03DPmlcn48zp0xj+7PHU3HXrEG95JctNZWd/zOTbQumYZ8cu9OjaxJQPUt0c+rp63n8i3+gIzel9/1FEGcCjaPd/OmU35Fych1iH7z/xcSVQMkXN7Pgi0/TnteH+xOltLOQ6pG4XBw8fxodKTaGvLuj9xl0Zk6h4jYfrU0uMla4SC/rxPXOpzFdVD4Wcblo/rdptKfZGPJOH+6PxbSzkOo3095O8ivLSaZvS7u3DXHzxIzf86PtF5N4U0PYpyiPNqa9naTFy0mib/cnWmkSUGGT8skufnDXtbj3efC1VPV+gIoKmgSijQj21FSwCd7Gg9FRlO5jTJ491aS+WA30MJ2UikqDt9YmRtlzctjy6Fjqn8vFPrHI6nAAsOcOYevvx1D3bB72CcEvBKKikyaBKCMJTr4wupzLRq3AmxwdzWvidnH55BX8fOIrtIxMxz5kiL8fgBoUNAlEGW9tPftuL+TN67+EbVOZ1eEcpsR1kK888Hf2PZOOfUyh1eGoMNE6gShjOjuQf67GDgO62Id9yBAkORFfbf3R04x7fWxozGdNaiKnpmyhOjeNUueoAYxORZImAYU4HGy6bzRfm7mCZfefSNKryw/73FtTx8Gbi7k/5UoAbK0ebDt1NNFgoUkgxtmSk5HCYUhLG57yiuBPlOhlQuIePnIePfmn6eyAlRsOe3bsWkqxud3IyAKkoxNP2a7BP15gkNE6gRjXevokTnpxA5t/moPN7Q7qHMbjYdL9e3n5W2eS/t6Wfh/vPWECRc+Vs+vhZOwZGUHFoKyjJQEFgGdHGQAD2SvBMXwY3vws7FX1ePZUD+CVVVdaEohxiX/byPJLJjPhR/VhWwuwv+wrN1N6+UgKb2nG24/l03dcNYprnl9C+ZwxkQtO9UpLAjHO19wMm8JUSSeCbfJ4vOluHBvL+7wkuq+tDYKYjNTeDpvahmEPYk1PcSbA1HEYhw3b2tJjLpyqjk1LAuoQm8tF+b0O5ix4g4OnFUf8eoXzN/HxRRMY/vSGfh9rH5ZH2q/3MOXRdVA8MgLRxQ8tCahDjDG01ifx9t7jcTRHvnbA29AAvZU2bHZkxkQ6Mly4V5fhrd/r3+7xsrF2KNXJaaR0xPIYPutpElCHmPZ2Jv5XKQ0JbhL2rY+KQUC2RDc1d3dy98TX+NUtl+F+w58EPLv3UDiv0z+oqW6vxVHGNk0C6jDevfusDuFwXi/7d2XwWPJsnE1d/uIbg7euzrq4BhFNAiqq+draGH/nRsThQJrWRkXpZLDRJKCinq+pyeoQBrWQWgdE5PsiskFE1ovICyLiFpHRIrJcREpFZKGIRMd4WKVUt4JOAiIyHLgRKDHGHAfYgUuAB4BfGWOKgAbgqnAEqlQ42McXsfeaWXR++QSrQ4kaofYTcACJIuIAkoA9wJeARYHPnwEuCvEaSoVN7WlDeOPHv6Ty6k6dGCUg6DoBY0yViDwI7AJagT8DK4H9xpjPqnErgeHdHS8ic4G5AG56XqXXXjyG3ecMJbXKS9Jrn0THnHuDnDgTaPz3GbTm2Bj2ZkVooxOjTNrODk7/6FrcK1L8KySpkB4HMoELgdHAMCAZOKevxxtj5htjSowxJU5cPe7XUJLLq7f9gs6r92JLcAYbruoHW3Iiudfu5OnbfkXz5KFWhxNWzvdXMvqyDeQ//LEOeQ4I5XHgy8BOY0ydMaYTWAycAmQEHg8ACoCQ5p5O29nCl967meYPcjEe7Rk2EExbO1vfG8vF795AYuUgrJn3eTUBdBFKE+EuYKaIJOF/HDgT+AT4APga8CIwB3g9pAiXrWXcMv9L/bENDF9bGyN++pH/tcWxqMgLuiRgjFmOvwLwU2Bd4FzzgR8Ct4hIKZANPBWGONUR7MVj2HX3ydTPm4W4en6cUqo3IXUWMsbcA9xzxOYdwImhnFf1rmVcNou/+yA/rvgqLQvdeNuDGI+rFNpjMGYllTZw4fO3krRHGNq60upwVAzTJBCjvFtKGX2XfyIPrStRodBJRZSKc5oElIpzmgSUinOaBJSKc5oElIpzmgSUinOaBJSKc5oElIpzmgSUinOaBJSKc5oElIpzmgRU1LFnZuIoGI7N7bY6lLigSUBFF5udrf81ntGv1tN4wVSro4kLmgRU1PFmeDgjfROeRP3vORB0KLGKLj4vE3/RwOMLLiZ7Wyk6t3TkaRJQUce7dTuyFU0AA0TLW0rFOU0CSsU5TQJKxTmtE4hx9uwsOo8biaOhFd+6Lbqohuo3LQnEuIOnFnHNE4upuNeOTdcfUEHQJBDjHM1eFtWW0FydjNFSgAqCPg7EuIS/rePgxelM7NyiC5CooGgSiHGmswNvXZ3VYUQNe2YmB08rxtHsJeHD9RhNjL3SxwE1qHgmjWTeL15h2E+2Y8/KtDqcmKAlATWo2A+08bN159Jan8TEjlKrw4kJmgTUoOLbsIWR33JhjNE6kj7q9XFARBaISK2IrO+yLUtE3hORbYHvmYHtIiK/EZFSEVkrIjMiGbxSRzEGX1ub1gX0Q1/qBP4POOeIbXcAS40xxcDSwHuAc4HiwNdc4LHwhKmUipRek4Ax5u/AviM2Xwg8E3j9DHBRl+1/MH7LgAwRyQ9TrEqpCAi2dSDPGLMn8LoayAu8Hg5UdNmvMrDtKCIyV0Q+EZFPOtGim1JWCbli0BhjRKTfXdWMMfOB+QBpkqVd3ZTqQft5X6CmxEnBB63YPlwV9vMHWxKo+ayYH/heG9heBYzosl9BYJtSKki7/s3Gpv98lMozEiNy/mCTwBJgTuD1HOD1LtuvCLQSzAQOdHlsiDmOkSOo+PHJVN90MrbUVKvDUXFq6N+FMa/OI++Tzoicv9fHARF5AZgN5IhIJXAP8HPgJRG5CigHvhHY/U/AeUAp0AJcGYGYB0zHqBwe/c7veW3/DLYtysXX1GR1SCoOpS5cRurCyJ2/1yRgjLm0h4/O7GZfA1wXalDRIqF8L9/7w3+ScACGNa6zOhylIkJ7DB6Dp2wXhfftAsBncSxKRYoOIFIqzmkSUCrOaRJQKs5pElAqzmkSUCrOaRJQKs5pElAqzmkSUCrOaRJQKs5pElAqzmkSUCrOaRJQKs5pElAqzukowm6IMwH7iGHg8+HZVQU+r9UhKRUxWhLohowfQ/IfmjjweweO4TpZshrcNAl0w7gdfDN3BecM2whOLSypwU2iYU17EakDmoF6q2PpQQ4aWzCiNbZojQsiG9tIY8yQIzdGRRIAEJFPjDElVsfRHY0tONEaW7TGBdbEpo8DSsU5TQJKxbloSgLzrQ7gGDS24ERrbNEaF1gQW9TUCSilrBFNJQGllAU0CSgV56IiCYjIOSKyRURKReQOC+MYISIfiMhGEdkgIjcFtmeJyHsisi3wPdPCGO0iskpE3gy8Hy0iywP3bqGIJFgUV4aILBKRzSKySURmRct9E5HvB36e60XkBRFxW3XfRGSBiNSKyPou27q9T4E1PX8TiHGtiMyIREyWJwERsQO/A84FJgGXisgki8LxALcaYyYBM4HrArHcASw1xhQDSwPvrXITsKnL+weAXxljioAG4CpLooJHgHeMMROAqfhjtPy+ichw4EagxBhzHGAHLsG6+/Z/wDlHbOvpPp0LFAe+5gKPRSQiY4ylX8As4N0u7+8E7rQ6rkAsrwNnAVuA/MC2fGCLRfEUBP6TfAl4ExD8vcsc3d3LAYwrHdhJoKK5y3bL7xswHKgAsvAPmHsTONvK+waMAtb3dp+Ax4FLu9svnF+WlwT4/If0mcrANkuJyChgOrAcyDOfL7FeDeRZFNavgdv5fGnEbGC/McYTeG/VvRsN1AFPBx5VnhSRZKLgvhljqoAHgV3AHuAAsJLouG+f6ek+DcjvRjQkgagjIinAK8DNxpjGrp8Zf0oe8HZVETkfqDXGrBzoa/eBA5gBPGaMmY5/HMhhRX8L71smcCH+RDUMSObo4njUsOI+RUMSqAJGdHlfENhmCRFx4k8AzxljFgc214hIfuDzfKDWgtBOAb4qImXAi/gfCR4BMkTks6GOVt27SqDSGLM88H4R/qQQDffty8BOY0ydMaYTWIz/XkbDfftMT/dpQH43oiEJrACKA7W1CfgrbZZYEYiICPAUsMkY83CXj5YAcwKv5+CvKxhQxpg7jTEFxphR+O/RX4wxlwMfAF+zOLZqoEJExgc2nQlsJAruG/7HgJkikhT4+X4Wm+X3rYue7tMS4IpAK8FM4ECXx4bwGeiKmh4qSs4DtgLbgf+yMI5T8RfF1gKrA1/n4X/2XgpsA94Hsiy+X7OBNwOvxwD/AkqBlwGXRTFNAz4J3LvXgMxouW/AfcBmYD3wR8Bl1X0DXsBfN9GJvwR1VU/3CX/F7+8Cvxfr8LdwhD0m7TasVJyLhscBpZSFNAkoFec0CSgV5zQJKBXnNAkoFec0CSgV5zQJKBXn/h/K3j5w6lIVDwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"H, W = img_size // patch_size, img_size // patch_size\n",
"print(f\"Sequence length: {H}x{W} = {H * W}\")\n",
"\n",
"rand_pattern = torch.rand((H * W) ** 2).reshape(H * W, H * W) > 0.999\n",
"\n",
"gaus_2d_dist = AP.local_2d_gausian_distribution(H, W, sigma=16)\n",
"sparsity = 0.995\n",
"num_non_zeros = int((H * W) ** 2 * (1 - sparsity))\n",
"random_gaus_2d_pattern = AP.random_pattern_from_probability_matrix(gaus_2d_dist, num_non_zeros)\n",
"\n",
"t_mask = rand_pattern | random_gaus_2d_pattern\n",
"\n",
"# and let's not forget to add a global attention for the cls_token\n",
"mask = torch.ones((H * W + 1, H * W + 1), dtype=torch.bool)\n",
"mask[1:, 1:] = t_mask\n",
"\n",
"print(f\"Sparsity: {1 - mask.float().mean().item()}, nnz={num_non_zeros}\")\n",
"\n",
"plt.imshow(mask[H * W // 2 + W // 2][1:].reshape(H, W))\n",
"plt.show()\n",
"\n",
"mask = SparseCS(mask, torch.device(\"cuda\"))"
]
},
{
"cell_type": "markdown",
"id": "ddf7b6e9-95c3-465e-9a56-c813c30dd943",
"metadata": {},
"source": [
"And now, as before, replace the dense attentions with the sparse ones"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "6cd67fee-1736-4d6b-b63b-0ef087be9fc7",
"metadata": {},
"outputs": [],
"source": [
"model_sparse = replace_attn_with_xformers_one(model_sparse, mask)"
]
},
{
"cell_type": "markdown",
"id": "67357795-a78e-43fa-a4f9-3a856d993370",
"metadata": {},
"source": [
"Now create a random input and let's feed it to our model and benchmark"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "6ea14f36-2384-428e-888e-26c7004748a2",
"metadata": {},
"outputs": [],
"source": [
"i = torch.rand(8, 3, img_size, img_size).cuda()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d9bf472b-227f-441a-864d-8baa9658cda2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Forward only\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7fbea8033d00>\n",
"profile\n",
" Median: 194.43 ms\n",
" IQR: 0.94 ms (193.73 to 194.67)\n",
" 11 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 8022.40283203125 MB\n",
"\n",
"Forward + backward\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf04af4f0>\n",
"profile\n",
" Median: 633.81 ms\n",
" IQR: 3.66 ms (632.41 to 636.07)\n",
" 4 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 8207.640625 MB\n"
]
}
],
"source": [
"print(\"Forward only\")\n",
"profile_model(lambda : model_sparse(i))\n",
"print(\"\")\n",
"print(\"Forward + backward\")\n",
"profile_model(lambda : model_sparse(i).sum().backward())"
]
},
{
"cell_type": "markdown",
"id": "a3703edc-d2c6-4ebd-946c-219cd8a17153",
"metadata": {},
"source": [
"By using a very sparse matrix for the self-attention computation, we were able to run ViT with sequence length of 10k by using ~8GB of GPU memory for a batch size of 8.\n",
"The speed / memory can be easily tuned by controlling the degree of sparsity of your `attn_mask`.\n",
"\n",
"# Wrapping up\n",
"\n",
"In this notebook, we've show one way of quickly getting started with using xformers in your codebase.\n",
"We showed how to get both memory and speed savings by leveraging sparse computations, and we also showed that it is possible to runa full forward+backward on a ViT model whose sequence length is greater than 10k.\n",
"\n",
"We hope that xformers can enable new research directions on very large sequences.\n",
"\n",
"If you have questions, we will be happy to help you getting started with xformers!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|