File size: 37,167 Bytes
e202b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e06e7b36-d1b0-4367-8ff0-68ff640649a6",
   "metadata": {},
   "source": [
    "# Sparse Vision Transformers with xformers\n",
    "\n",
    "In this notebook, we will illustrate how one can use the functionality available in xformers to\n",
    "quickly adapt an already existing Vision Transformer to use xformers efficient sparse kernels.\n",
    "\n",
    "In this notebook, you'll see:\n",
    "- how to get **memory and speed improvements** on a standard ViT model by using xformers with 80% sparsity\n",
    "- how to scale up a standard ViT model so that it can handle sequence **lengths larger than 10k**\n",
    "\n",
    "Let's start with a few imports. In this notebook, we will be using the `VisionTransformer` from timm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0ea655b8-5e01-41c1-b064-37525fe3c931",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import copy\n",
    "import torch\n",
    "from torch import nn\n",
    "from torch.utils import benchmark\n",
    "\n",
    "import xformers.components.attention.attention_patterns as AP\n",
    "from xformers.components.attention.core import scaled_dot_product_attention\n",
    "from xformers.components.attention._sputnik_sparse import SparseCS\n",
    "\n",
    "import timm\n",
    "from timm.models.vision_transformer import VisionTransformer\n",
    "\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ec7139ee-c701-423a-910b-51b7c16e4b4f",
   "metadata": {},
   "source": [
    "To facilitate benchmarking and memory profiling, let's define a function that takes a generic callable and executes it, measuring the execution time and the GPU memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "fef5fd04-5e83-4fb0-af21-379ab6d1f1fd",
   "metadata": {},
   "outputs": [],
   "source": [
    "def profile_model(fn, min_run_time=2):\n",
    "    torch.cuda.reset_peak_memory_stats()\n",
    "    torch.cuda.synchronize()\n",
    "    res = benchmark.Timer(\n",
    "        stmt='fn()',\n",
    "        globals={\"fn\": fn},\n",
    "        label=\"profile\",\n",
    "        sub_label=\"\",\n",
    "        description=\"\"\n",
    "    ).blocked_autorange(min_run_time=min_run_time)\n",
    "    torch.cuda.synchronize()\n",
    "    memory = torch.cuda.max_memory_allocated() / 2 ** 20\n",
    "    memory = f\"Memory used: {memory} MB\"\n",
    "    print(res)\n",
    "    print(memory)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b384c152-0e62-41cb-9c1e-611e8e5115fa",
   "metadata": {},
   "source": [
    "Now it comes the core of it. We will implement an `Attention` module following the same API and modules as timm's, but using our `scaled_dot_product_attention` function.\n",
    "It is worth noting that the `scaled_dot_product_attention` from xformers supports both dense and sparse tensors with the same API, so it can be a drop-in replacement\n",
    "for experimenting with both sparse and dense attention.\n",
    "\n",
    "Internally, `scaled_dot_product_attention` will dispatch to the sparse variants if the `attn_mask` is sparse, otherwise it will dispatch to the dense implementation.\n",
    "\n",
    "We provide support for both COO-sparse matrices (via PyTorch `sparse_coo_tensor`) and CSR matrices (via our custom implementation).\n",
    "The CSR implementation is significantly faster and should be preferred at pretty-much all times."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1aaa3de6-4be6-4a5c-b8db-6cb6bd712984",
   "metadata": {},
   "outputs": [],
   "source": [
    "# almost drop-in replacement for timm attention\n",
    "# but using the sparsity-aware scaled_dot_product_attention from xformers\n",
    "class Attention(torch.nn.Module):\n",
    "    def __init__(\n",
    "        self,\n",
    "        dim,\n",
    "        num_heads=8,\n",
    "        qkv_bias=False,\n",
    "        attn_drop=0.0,\n",
    "        proj_drop=0.0,\n",
    "        attn_mask=None,\n",
    "    ):\n",
    "        super().__init__()\n",
    "        self.num_heads = num_heads\n",
    "\n",
    "        self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias)\n",
    "        self.attn_drop = torch.nn.Dropout(attn_drop)\n",
    "        self.proj = torch.nn.Linear(dim, dim)\n",
    "        self.proj_drop = torch.nn.Dropout(proj_drop)\n",
    "        self.attn_mask = attn_mask\n",
    "\n",
    "    def forward(self, x):\n",
    "        B, N, C = x.shape\n",
    "        qkv = (\n",
    "            self.qkv(x)\n",
    "            .reshape(B, N, 3, self.num_heads, C // self.num_heads)\n",
    "            .permute(2, 0, 3, 1, 4)\n",
    "        )\n",
    "\n",
    "        qkv = qkv.flatten(1, 2)\n",
    "\n",
    "        q, k, v = qkv.unbind()\n",
    "\n",
    "        x = scaled_dot_product_attention(q, k, v, self.attn_mask, dropout=self.attn_drop)\n",
    "        x = x.reshape(B, self.num_heads, N, C // self.num_heads)\n",
    "\n",
    "        x = x.transpose(1, 2).reshape(B, N, C)\n",
    "        x = self.proj(x)\n",
    "        x = self.proj_drop(x)\n",
    "        return x"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a853593-b3df-4526-871f-9967e1942394",
   "metadata": {},
   "source": [
    "Let's write a function that given a model, will replace all instances of `timm.models.vision_transformer.Attention` with our own implementation, which leverages `scaled_dot_product_attention` from xformers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "fccb2a4a-b864-452c-8649-7138855709af",
   "metadata": {},
   "outputs": [],
   "source": [
    "def replace_attn_with_xformers_one(module, att_mask):\n",
    "    module_output = module\n",
    "    if isinstance(module, timm.models.vision_transformer.Attention):\n",
    "        qkv = module.qkv\n",
    "        dim = qkv.weight.shape[1] * module.num_heads\n",
    "        module_output = Attention(dim, module.num_heads, attn_mask=att_mask)\n",
    "    for name, child in module.named_children():\n",
    "        module_output.add_module(name, replace_attn_with_xformers_one(child, att_mask))\n",
    "    del module\n",
    "    return module_output"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0ece835a-a715-4f44-94d4-0fdeb1bf1386",
   "metadata": {},
   "source": [
    "Now it's time to create our Vision Transformer. Nothing unusual here. Note that we will be keeping a copy of the model, which will be the model to use sparse self-attention"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "16934f00-841b-4bc0-a140-8c8ab7aada34",
   "metadata": {},
   "outputs": [],
   "source": [
    "img_size = 224\n",
    "patch_size = 16\n",
    "\n",
    "model = VisionTransformer(img_size=img_size, patch_size=patch_size,\n",
    "                              embed_dim=96, depth=8, num_heads=8, mlp_ratio=3.,\n",
    "                              qkv_bias=False, norm_layer=nn.LayerNorm).cuda()\n",
    "\n",
    "model_sparse = copy.deepcopy(model)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0620e39a-1db5-407f-ad5d-8ddafcf9a8b9",
   "metadata": {},
   "source": [
    "What comes next is about creating a sparsity pattern that we will be using for our model.\n",
    "\n",
    "You can refer to the `2d_attention` tutorial for further information on how to build custom attention patterns with xformers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ffe7f787-3398-47ba-86e6-b8d333713740",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sequence length: 14x14 = 196\n",
      "Sparsity: 0.8061789721250534, nnz=1152\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAALfElEQVR4nO3dX6xlBXXH8e+vM8A4+AdoGyIMKTxQDCEIZkJRG9s4NIxIGB/6AJEGqsm8tBWNiYHwYPrWRGM0qdEQREkl8IBYCVFhihrTpFIHmFJgEChaGBgcWlIxEBkmrj6cQzLczIC5e599z7C+n+Tmnr3Pvnete5kf+885+65UFZLe/H5vrRuQNA3DLjVh2KUmDLvUhGGXmlg/ZbGjc0xt4NgpSy6FPz77pUFf/+gDG4/I2preb3iR/fVyDvVcpnzp7e05of4kWyartyzufGbXoK+/8KRzjsjamt49dTcv1POHDLuH8VIThl1qwrBLTQwKe5KtSX6W5PEkV4/VlKTxrTrsSdYBXwY+BJwJXJbkzLEakzSuIXv284DHq+qJqtoP3AJsG6ctSWMbEvaTgacOWt4zX/caSbYn2Zlk5yu8PKCcpCEWfoGuqq6rqs1Vtfkojll0OUmHMSTsTwOnHLS8ab5O0hIaEvafAqcnOS3J0cClwO3jtCVpbKt+b3xVHUjyt8CdwDrghqp6aLTOJI1q0I0wVfVd4Lsj9SJpgXwHndSEYZeamPR+9q68TVTLwD271IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9SEYZeaMOxSE0OmuJ6S5IdJHk7yUJKrxmxM0riG/MHJA8Cnq+q+JG8D7k2yo6oeHqk3SSNa9Z69qvZW1X3zx78GdnOIKa6SlsMof0o6yanAucA9h3huO7AdYAMbxygnaRUGX6BL8lbgW8Anq+qFlc87sllaDoPCnuQoZkG/qapuG6clSYsw5Gp8gK8Bu6vqC+O1JGkRhuzZ3w/8FfDBJLvmHxeN1JekkQ2Zz/6vQEbsRdIC+Q46qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9SEYZeaMOxSE4ZdasKwS00YdqkJwy41YdilJgy71IRhl5ow7FITY4x/Wpfk/iR3jNGQpMUYY89+FbMJrpKW2NBZb5uADwPXj9OOpEUZumf/IvAZ4LeH2yDJ9iQ7k+x8hZcHlpO0WkMGO14M7Kuqe19vO0c2S8th6GDHS5L8AriF2YDHb47SlaTRrTrsVXVNVW2qqlOBS4EfVNXlo3UmaVS+zi41seqRzQerqh8BPxrje0laDPfsUhOGXWpilMN46XDufGbXqr/2wpPOOWJrLyP37FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSa8xfUIMORWzbWuvZa3ir4Zb1Mdwj271IRhl5ow7FIThl1qYuhgx+OS3JrkkSS7k7x3rMYkjWvo1fgvAd+vqr9McjSwcYSeJC3AqsOe5B3AB4ArAapqP7B/nLYkjW3IYfxpwHPA15Pcn+T6JMeu3MiRzdJyGBL29cB7gK9U1bnAi8DVKzdyZLO0HIaEfQ+wp6rumS/fyiz8kpbQkJHNzwJPJTljvmoL8PAoXUka3dCr8X8H3DS/Ev8E8NfDW5K0CIPCXlW7gM3jtCJpkXwHndSEYZeaSFVNVmzzuzfUv995ymT1pG7Ou/Apdv7Hb3Ko59yzS00YdqkJwy41YdilJgy71IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOTzmd/9IGNzsxehbWczz7Ukfrf+0idS/9o/e9hn3PPLjVh2KUmDLvUxNCRzZ9K8lCSB5PcnGTDWI1JGteqw57kZOATwOaqOgtYB1w6VmOSxjX0MH498JYk65nNZn9meEuSFmHIrLengc8DTwJ7gV9V1V0rt3Nks7QchhzGHw9sYzan/STg2CSXr9zOkc3SchhyGH8B8POqeq6qXgFuA943TluSxjYk7E8C5yfZmCTMRjbvHqctSWMbcs5+D3ArcB/wn/Pvdd1IfUka2dCRzZ8FPjtSL5IWyHfQSU0YdqmJSW9x1eoMuV3ySL1Vc629GX9u9+xSE4ZdasKwS00YdqkJwy41YdilJgy71IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNvGHYk9yQZF+SBw9ad0KSHUkem38+frFtShrqd9mzfwPYumLd1cDdVXU6cPd8WdISe8OwV9WPgedXrN4G3Dh/fCPwkXHbkjS21f4p6ROrau/88bPAiYfbMMl2YDvABjauspykoQZfoKuqAup1nndks7QEVhv2XyZ5J8D8877xWpK0CKsN++3AFfPHVwDfGacdSYvyu7z0djPwb8AZSfYk+TjwD8BfJHkMuGC+LGmJveEFuqq67DBPbRm5F0kL5DvopCYMu9SEI5sn4NhkLQP37FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9SE97NPwPvRtQzcs0tNGHapCcMuNbHakc2fS/JIkgeSfDvJcQvtUtJgqx3ZvAM4q6rOBh4Frhm5L0kjW9XI5qq6q6oOzBd/AmxaQG+SRjTGOfvHgO+N8H0kLdCg19mTXAscAG56nW2czy4tgVWHPcmVwMXAlvmM9kOqquuA6wDenhMOu52kxVpV2JNsBT4D/FlVvTRuS5IWYbUjm/8ReBuwI8muJF9dcJ+SBlrtyOavLaAXSQvkO+ikJgy71IRhl5ow7FIThl1qwrBLTRh2qQnDLjVh2KUmDLvUhGGXmjDsUhOGXWrCsEtNGHapCcMuNWHYpSYMu9REXucPw45fLHkO+O/X2eQPgP+ZqB1rW/vNWPuPquoPD/XEpGF/I0l2VtVma1vb2uPzMF5qwrBLTSxb2K+ztrWtvRhLdc4uaXGWbc8uaUEMu9TEUoQ9ydYkP0vyeJKrJ6x7SpIfJnk4yUNJrpqq9kE9rEtyf5I7Jq57XJJbkzySZHeS905Y+1Pz3/eDSW5OsmHB9W5Isi/JgwetOyHJjiSPzT8fP2Htz81/7w8k+XaS4xZRe6U1D3uSdcCXgQ8BZwKXJTlzovIHgE9X1ZnA+cDfTFj7VVcBuyeuCfAl4PtV9S7g3VP1kORk4BPA5qo6C1gHXLrgst8Atq5YdzVwd1WdDtw9X56q9g7grKo6G3gUuGZBtV9jzcMOnAc8XlVPVNV+4BZg2xSFq2pvVd03f/xrZv/gT56iNkCSTcCHgeunqjmv+w7gA8wHdFbV/qr6vwlbWA+8Jcl6YCPwzCKLVdWPgedXrN4G3Dh/fCPwkalqV9VdVXVgvvgTYNMiaq+0DGE/GXjqoOU9TBi4VyU5FTgXuGfCsl9kNuf+txPWBDgNeA74+vwU4vokx05RuKqeBj4PPAnsBX5VVXdNUXuFE6tq7/zxs8CJa9ADwMeA701RaBnCvuaSvBX4FvDJqnphopoXA/uq6t4p6q2wHngP8JWqOhd4kcUdxr7G/Nx4G7P/4ZwEHJvk8ilqH07NXn+e/DXoJNcyO5W8aYp6yxD2p4FTDlreNF83iSRHMQv6TVV121R1gfcDlyT5BbNTlw8m+eZEtfcAe6rq1aOYW5mFfwoXAD+vqueq6hXgNuB9E9U+2C+TvBNg/nnflMWTXAlcDHy0JnqzyzKE/afA6UlOS3I0s4s1t09ROEmYnbfurqovTFHzVVV1TVVtqqpTmf3MP6iqSfZwVfUs8FSSM+artgAPT1Gb2eH7+Uk2zn//W1ibC5S3A1fMH18BfGeqwkm2Mjt9u6SqXpqqLlW15h/ARcyuSv4XcO2Edf+U2eHbA8Cu+cdFa/Dz/zlwx8Q1zwF2zn/2fwaOn7D23wOPAA8C/wQcs+B6NzO7PvAKs6OajwO/z+wq/GPAvwAnTFj7cWbXqV79N/fVKX7vvl1WamIZDuMlTcCwS00YdqkJwy41YdilJgy71IRhl5r4f997Y5TiItSwAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "H, W = img_size // patch_size, img_size // patch_size\n",
    "print(f\"Sequence length: {H}x{W} = {H * W}\")\n",
    "\n",
    "axial_pattern = AP.axial_2d_pattern(H, W)\n",
    "loc_2d_dist = AP.local_2d_pattern(H, W, distance=2, p=2.0)\n",
    "rand_pattern = torch.rand((H * W) ** 2).reshape(H * W, H * W) > 0.99\n",
    "\n",
    "gaus_2d_dist = AP.local_2d_gausian_distribution(H, W, sigma=5)\n",
    "sparsity = 0.97\n",
    "num_non_zeros = int((H * W) ** 2 * (1 - sparsity))\n",
    "random_gaus_2d_pattern = AP.random_pattern_from_probability_matrix(gaus_2d_dist, num_non_zeros)\n",
    "\n",
    "\n",
    "t_mask = axial_pattern | loc_2d_dist | rand_pattern | random_gaus_2d_pattern\n",
    "\n",
    "# and let's not forget to add a global attention for the cls_token\n",
    "mask = torch.ones((H * W + 1, H * W + 1), dtype=torch.bool)\n",
    "mask[1:, 1:] = t_mask\n",
    "\n",
    "print(f\"Sparsity: {1 - mask.float().mean().item()}, nnz={num_non_zeros}\")\n",
    "\n",
    "plt.imshow(mask[H * W // 2 + W // 2][1:].reshape(H, W))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "885350c5-3f16-49cd-89c6-55c53fb3d77e",
   "metadata": {},
   "source": [
    "From the print just above, we can see that the full `attn_mask` has a sparsity level of around 80%.\n",
    "\n",
    "Once we are happy with the sparsity pattern, the next step is to create the sparse matrix that holds our sparsity pattern.\n",
    "\n",
    "Everything is handled by `SparseCS` class.\n",
    "\n",
    "**Note: the optimized kernels require that the total number of nonzero elements in the full `attn_mask` to be a multiple of 4. This is handled by default in the implementation (by removing elements until the number of non zeros is a multiple of 4)**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ef202f12-7622-42d3-bbf6-01fa964c5b21",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.8061789791027855\n"
     ]
    }
   ],
   "source": [
    "mask = SparseCS(mask, torch.device(\"cuda\"))\n",
    "print(1 - mask.values.shape[1] / (mask.shape[0] * mask.shape[1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ce894e15-97a1-4490-98a9-4c4d039e4cc3",
   "metadata": {},
   "source": [
    "Now we are ready to replace the dense attentions with with sparse versions which leverage the sparsity pattern that we have just created"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "232d065e-afc5-4d7e-88ee-7e7fad875c07",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_sparse = replace_attn_with_xformers_one(model_sparse, mask)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0a809363-a1c4-4bda-ad0a-610c078d7e95",
   "metadata": {},
   "source": [
    "Let's new create an input tensor and benchmark both the sparse and the dense versions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "62c6d031-f4a1-4b89-a388-3b8f2f3c17a8",
   "metadata": {},
   "outputs": [],
   "source": [
    "i = torch.rand(64, 3, img_size, img_size).cuda()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3b420967-81ae-4c2a-ae20-7690c575c392",
   "metadata": {},
   "source": [
    "## Profiling the default (dense) model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "f3f150fe-5b2c-49b2-92a6-285a6f67205e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Forward only\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf375a400>\n",
      "profile\n",
      "  Median: 22.70 ms\n",
      "  IQR:    0.09 ms (22.68 to 22.77)\n",
      "  88 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 1790.81689453125 MB\n",
      "\n",
      "Forward + backward\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf0464760>\n",
      "profile\n",
      "  Median: 77.05 ms\n",
      "  3 measurements, 10 runs per measurement, 1 thread\n",
      "Memory used: 1975.78173828125 MB\n"
     ]
    }
   ],
   "source": [
    "print(\"Forward only\")\n",
    "profile_model(lambda : model(i))\n",
    "print(\"\")\n",
    "print(\"Forward + backward\")\n",
    "profile_model(lambda : model(i).sum().backward())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1959b60b-aa09-4823-be4a-32ff24910d28",
   "metadata": {},
   "source": [
    "## Profiling the sparsity-aware model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "fab86e1c-fff6-4457-aaee-9ad8303ee2df",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Forward only\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf0406460>\n",
      "profile\n",
      "  Median: 16.38 ms\n",
      "  IQR:    0.05 ms (16.37 to 16.42)\n",
      "  13 measurements, 10 runs per measurement, 1 thread\n",
      "Memory used: 822.93701171875 MB\n",
      "\n",
      "Forward + backward\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf375a040>\n",
      "profile\n",
      "  Median: 53.41 ms\n",
      "  IQR:    0.01 ms (53.40 to 53.41)\n",
      "  4 measurements, 10 runs per measurement, 1 thread\n",
      "Memory used: 835.51025390625 MB\n"
     ]
    }
   ],
   "source": [
    "print(\"Forward only\")\n",
    "profile_model(lambda : model_sparse(i))\n",
    "print(\"\")\n",
    "print(\"Forward + backward\")\n",
    "profile_model(lambda : model_sparse(i).sum().backward())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "65f51323-0ab6-4af2-b731-dad87a65789d",
   "metadata": {},
   "source": [
    "This shows that not only the sparse model is ~30% faster, but it also uses less than half the memory compared to the dense counterpart. Great!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9654e78-daa2-4023-848e-4c4ae8b6e500",
   "metadata": {},
   "source": [
    "# Scaling ViT to sequence lengths of size larger than 10k\n",
    "\n",
    "Getting speed-ups for training / inference on standard workloads thanks to sparsity is nice, but by leveraging the memory savings from sparse computations we can actually easily scale up ViT to sequence lengths which are much larger than what was originally possible.\n",
    "\n",
    "Let's get back to the original model, but this time scale it up so that the sequence length is `112 x 112`, and use a 99.5% sparsity pattern."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "a6cc8a1e-18f1-423c-af1e-2f7e88d3b332",
   "metadata": {},
   "outputs": [],
   "source": [
    "img_size = 224\n",
    "patch_size = 2\n",
    "\n",
    "model_sparse = VisionTransformer(img_size=img_size, patch_size=patch_size,\n",
    "                              embed_dim=96, depth=8, num_heads=8, mlp_ratio=3.,\n",
    "                              qkv_bias=False, norm_layer=nn.LayerNorm).cuda()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1922754f-9a0b-42b3-9819-4a729c8611b0",
   "metadata": {},
   "source": [
    "Everything was the same as before, with the difference that the patch size is now `2x2`, which means that the sequence length is `112x112`, which is much larger than what has been used so far.\n",
    "\n",
    "Let's create a sparsity pattern to have roughly 99.5% sparsity"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "a0ff06e2-9485-4e80-b18c-88b1531d904c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sequence length: 112x112 = 12544\n",
      "Sparsity: 0.9938480411656201, nnz=786759\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD7CAYAAABqkiE2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkW0lEQVR4nO3deXxU5bnA8d8zS2ayryQEQtgSVmUzVVCrWGtdrla9t4tLK7Uq3LpXrVVv61Lbe2urtva2WlHx2rqhiIpatUpta6tQRPY9QEISyAaBhOwz894/ZsQACUlmyZnJPN/PJ5/MnDnLwwl58p53FWMMSqn4ZbM6AKWUtTQJKBXnNAkoFec0CSgV5zQJKBXnNAkoFecikgRE5BwR2SIipSJyRySuoZQKDwl3PwERsQNbgbOASmAFcKkxZmNYL6SUCgtHBM55IlBqjNkBICIvAhcCPSaBBHEZN8kRCEUp9ZkmGuqNMUOO3B6JJDAcqOjyvhI46cidRGQuMBfATRInyZkRCEUp9Zn3zaLy7rZbVjFojJlvjCkxxpQ4cVkVhlJxLxJJoAoY0eV9QWCbUioKRSIJrACKRWS0iCQAlwBLInAdpVQYhL1OwBjjEZHrgXcBO7DAGLMh3NdRSoVHJCoGMcb8CfhTJM6tlAov7TGoVJzTJKBUnIvI44Dqnu/06ewf42bIsnq8m7ZZHY5SgJYEBo4I278rvPWTB9lz5lGdtpSyjJYEBooxpK5yMzt5Hrk7O62ORqlDNAkMoKG/WY78VjBer9WhKHWIJoGB5PNifFYHodThtE5AqTinSUCpOKdJQKk4p0lAqTinSUCpOKdJQKk4p0lAqTinSUCpOKdJQKk4p0lAqTinScBC4nAgzgQQsTqUfhNngj92FfM0CVhEnAmU3f0Fql4qwnfaNKvD6RfH6JFsfeJ4tvx2Ko6heVaHo0KkScAiYreRNG0fz01fQPPQINZdsNmxJSdjc7vDH1wvfGlJ3Hrin7n0xOWYlKQBv74KLx1FaBFfezuZv05h3tCbyfqoEk9/T1Ayifq729m7I5Pxd67H19wciTC7JTurePFH5yFeQ/IenUg61mkSsIoxOP6ykjTofwIAOrLc3D/hJX7pPhtxDuyP0dvYSNLi5QDoyOjYp0kgRiWuLON/vj+HhMZOfAd3Wx2OimGaBGKUt64O9xt1AIR3cXkVNBHsOTkAePfuA19szCClFYNKhYmjYDhVT+Rw4I+p2ItGWR1On2kSUCpcHHam5lUxc0gZDHA9TShiJ1Klopx3dzW1NxRTYxNs22NnXQlNAkqFiWlvh0/WA7HVaqKPA0rFOS0JqKjhGFWINycNW3kN3ro6q8OJG0GXBERkhIh8ICIbRWSDiNwU2J4lIu+JyLbA98zwhasGs803D+M7z71F7UVFVocSV0J5HPAAtxpjJgEzgetEZBJwB7DUGFMMLA28V6pX9jZhU9swbB1WRxJfgk4Cxpg9xphPA6+bgE3AcOBC4JnAbs8AF4UYo4oTRQ9u5ZOLishevN7qUOJKWOoERGQUMB1YDuQZY/YEPqoGuh1rKiJzgbkAbnQkmgJv/V6o32t1GN2yTZtEW14SSWsr8eyptjqcsAq5dUBEUoBXgJuNMY1dPzPGGHro1WqMmW+MKTHGlDgJYiitUgNEHA623ubivseepP6s0VaHE3YhJQERceJPAM8ZYxYHNteISH7g83ygNrQQlbKW8RnslW4erjgbd0NsjAfoj6AfB0REgKeATcaYh7t8tASYA/w88P31kCJUymo+L2PvX0uH20Vi4+pBN2ArlDqBU4BvA+tEZHVg2134f/lfEpGrgHLgGyFFqAaOzY7njGm05DrJ+rACT2WV1RFFDV9zMwzgxC0DKegkYIz5B9DTDJlnBnteZR2b20XzrQf43cTnuem2G0jWJBAXtNuwOsR0emhYNYSr117Bvol29l05C0fBcKvDUhGm3YbVIaazg9H3rMCWnUXCSw3cVfgmt9dci0tLBIOaJoEwsE2bxO7ZGWRt7iThnRVWhxMS4/Fgmg6y6cOpXFI4j/G7m2NqRJzqP00CYbB7dgb/vO1hprx/HcXvWB1N6HwtLYy6+1/+1zEyRZYKniaBMMja3MmU968j86NBtCKP/vLHDU0CYZDwzopBUQJQ8UlbB5SKc5oElIpzmgSUinOaBJSKc5oElIpzmgRU7BLxf6mQaBOhikn2nGy23T4Ob6KPiQ/twVO2y+qQYpaWBFRMktQULjv779z/lUV4c9KsDiemaUlAxSRf/T7eefA03kqA3LKtaP/G4GkSUDHJ19RExh8/BtAEECJ9HFAqzmlJQMU2EWxJ/inrfS0tYAbbDICRpyUBFdMchQVsf7KI7U8W4SgssDqcmKQlARXTTJKbr01YBcDqpPEWRxObNAmomGbKq1j2gy8A4CrfZHE0sUmTQBjYkpKwZWVimlvwNjQc2m5PS0PSUvEdaMTX1GRhhP1nHzIESXDira3HdEbvCqG+lhac76/0v7Y4llildQJhsO8/plL8eg3bb51w2PZd3zuOSUt2U33F8RZFFhxbaiqbHxxB6ktteE+aZHU4KsI0CYSBJwnOSl9PZ/rhf4s6Uwxnpa2nM9WiwIIkImRmHeSLmdvwuu097+dMwDF6JI4RBWDreT8V3cREQZNKmmSZkyR21ytxDM2jc2w+jpoDeEt3fr59VCGdw7NwltfF1mo+Nju2ScX4UhKwbyzD29jY7W4yfTIZv93Dlvpchs1rwFNdM8CBqv543yxaaYwpOXK71gmEgae6BqmuOarnmqdsF1K2C48lUYXA58W3fjMQ6I1ns2MfOxIcdnw7dmHa2/372YVcVxO73emWhapCp0lA9cqRn0fz73yMTatl97wxmDX+WnhZX8q274wlpdODt36vxVGqYGkSUL3z+Wj32mn1Og/f3NYGgRJDd+zZWfjGDMfWcPCwxyQVXbRiUPXKU1NH1rUe9s/JwGzc3ufjGs4ex7ef/ROb7sxGHPr3JlrpTybG2bOz6DxuJI6GVnzrtkSm77zPi2dnef9jazd8enAkctCB8VlTAW3PzqJz0kgcjW341m7WsQXdCLkkICJ2EVklIm8G3o8WkeUiUioiC0VkEC3LE30OnlrENU8spuJeOzaXy+pwDpP69jo2XzSMCfdvs2xFo+ZZRVz15Gvsvg9siYmWxBDtwvE4cBPQtb/mA8CvjDFFQANwVRiuoXrgaPayqLaE5upkoqG5tytfSwueikpLKw2dzR4W1Z5AY3Uq+LRPYXdC6icgIgXAM8DPgFuAC4A6YKgxxiMis4B7jTFnH+s8sd5PwEriTMCWkQ6dHXj3H7A6nKij9+dzkeon8GvgduCzPnHZwH5jzGdN45XA8O4OFJG5wFwAN0n9vrB93FgOTM0htfQgZtWGfh8/WJjODrx1dVaHERTblAk0Tsggff0+vBu3RuQasXx/BkrQjwMicj5Qa4xZGczxxpj5xpgSY0yJk/4/y1Z8NY8XHnqIrVenBHN5FQW2X5bJwgcfZMc3c6wOJa6FUhI4BfiqiJwHuIE04BEgQ0QcgdJAARCR/rIpVT7mbLmclO3aZz3a2ceNZe/MXNJ2tGL7x+pD21PK4NtbLie1PLrqMuJNWMYOiMhs4DZjzPki8jLwijHmRRH5PbDWGPPosY4Ppk5AHA4kIQHT6Ynqoa4Kaq8/mT/d/gtO+eBGir+z6lAz3aGfYUcHxhNznatjTk91ApHoLPRD4BYRKcVfR/BUBK6B8XjwtbRoAugjM2sqtdeeDDOnDPi108o9nPPpNaSsdR/WTn/oZ6gJwFJh6SxkjPkr8NfA6x3AieE4rwqfnRcmseZbv2baH29i9LKBvbb7zRXkv+PEeHVy8GikPQbjRPZ6w/R/Xk3W+t4f/8SZwIGvz6A1x8bwJZWhL/FljJbYopgmgTiR/uwy0p+TPnWbtSUnkv+f27m38A1u3H4DLl3nb1DTJBBP+lgJbNra2fLOZC4suJEJ5Y1hm7vPnDKNijOTyP3Ug/vNf4XprCpUmgTUUXxtbRT890f+12E8b9VpSayf91uK3prHuDfDeGIVEk0CFhNnAnXfPYHm4TDmuTq8W0oBsGdmUnH1RNqy/X+93fuEEU9txrt3n5XhhiRvZQfFr36PoR9Jn48RZwJ1V57AwREw9oW9EetZGM80CVjMlugm/9IyHh69iKtXfp/ELYEPcjK5cs473JK1A4D/bRjJ269/AWI4CTj//AnFf+7fMeJ2kfPNChYVvci3V99K8sbIxBbPNAlYzNfaRvXCyVww/DbGbq77fJ7Cfft5+g/n8FiOvyTg2icU1vc8i09IbHbqrzmR/RMMxc83Y1asO+xje0Y65ddOxpNsKPp9BZ6KysjE0Q3T1k79SyM4Z8QPGLtpr65AHAE627BCnAnUvjKapdOf5uwf3UrmMx8f9rlj5AhKluzgxOTt/Oayr8O/1vVwJhXNdLZh1SPj6cT1YianrLiNkav2HVUZ6Nu3nyXzT2dx4ukUVuyIvdmT1TFpElBgDGnPLyON7lsDfE1N5P7O31rQawIQOXTOPpG+9V1QkaMTjaqwkRMms3XBDHb9eBY2t7vX/fd/exY7n59C0yUzByA61RNNAlFEHI7+z8orgjgTomIZsJaCZF6d/SiFp+9CEnqfWnLvFFj9xSfYe1zfmwxV+OnjQJSwpaay7Z7JkN9O8QOt/plx+8DMmkL5zT7YnMKo+1da2kc/dfUervqfm0mq85HcUt3r/mNebeGUspsZtfLgAESneqJJIEqIK4GSWVv5bt6HPJBzRZ9/MC3D3Lx04iPMS70ccTosTQKe8gpy5lcA0JenfPloDbkf9f384nIhIvja27UeIYw0CUQJ34Emqv97KvekjSNzw44+t4enL69i7o9uJqnWg6+tLJIhWsqWmsqWn00ipbCRYT+1Yz5Zb3VIg8agTwK2pCQkwYnvYHNUT15hOjtwvbUCF/SrQ4ynopL0Zweu845VJMHJhOMruG7EX3go61s4ez9E9dHgrhi02dlx11RsryXRcv4Mq6NRIfAdaKT9/nweuO0K3Kv6vxqS6tngTgJAZ2E7d49cQmum9bXnPbFnpGMfMsRfy38kmx17Tjb27KzP2+DjkPF4cPxlJYmv/UunEA+zwZ0EfF7GP9zG7dddS+570Tkxhi0piU2/GEfCIhvemZOP+tw+ppC6/8um6qk8HIUFFkSoBrtBXyfgW70R1+o+9HSzit1O5tBG/j1vJU8nF3JUWSDByWn5pRz0uqhwDo1cGDnZSGIivrp6/5LjIbC53diG5GDa2qPmr/ahmFpbLV0WLRoN7pJADPA1t5B3t50/XnMBictLj/rc7NjFuuuPp+zGYnwVuyMSgzgcbL63iOLXqmk+J/TZiFu/dDyjF9ex6f7RSJQsktpy1hTGvlrDpvvHdv/YFcc0CYSBPSMd+7ix2PNyj7mfY2ief7+0tM83+rz4Vm/E9uEqvA0NRx3ja2tDPl4Dy9Zi2tvDHfrnUjuZmbKdpuEO7MVjsCX1f2m4z3hdNqanlONIi57JRb0uoSRlJ7bUTqtDiTqaBMKg7uJJfHnxKrbdOrbnnUTY8oPRfHnxKuovPvrZ30rG42HCT/fz1NUX0fGlA8x4eRutpwcfY+pft/LyFWdRfG8TpiM6EkHa0q08/+1zGX/fAZ35+AiDvk5gIBg7pNtb8DmO3YvN2CHF3oaxMPU6hg/DNyQDqao77HldOj3Y2j3Y7T6yHM00jXCQOGUCbK/A19zcr2t4GxpgRUPQE4A4Ro7Al5GC7KrutnQUjFBjGsy0JBAGua9sZtHXZzPhoWO0QBjDhAcrePXrpzHktQjNENQHpd8byZyFb1N1efGhbeJwsPHuXP7jmaXYlmby7tWnknBxLac8u5qOkyYMbIA2OxvvzOfiF//GvvPGD+y145SWBMLA29AADQ29zszrqazyL9ZuIVunsLszE9uRzSUdNqo6Mkmt8mLbsJO9+8dQnZOO+CLXR98xooDOEdk4d9X7702AdAi1nWnY9M/2gNDpxeKMPScbMtOhbi/e/QcObXcMzcOkJGH21OJracExLB9cCfh2V4fcZNiT8vtO5jeXP8H3F1xzaIpzwF/BmpqMqanH19QUkWvHI51eLEbZkpLwTh8HxmD/dEuffyEdBcNpGz8UV+WBQ9OYA/428m7ayT3VNYe/r9rtn9tg+kR8SQ6cq7bjbWwM7R9zBOdBWNo0GccRVQ7emlqoFWxTJuDJTsK1blfQ/Q3s2Vl0TBmFY387ZvVGHX3YDa0TiHIyqoCp/7uGoke2IAX5fT5u90Uj+dkT89l8fXbQ17ZlZsID+7josffpnDIm6PP0ZMTj61l/wXCGLTh64lJJSGD7nU5umf8cB844RqtLL5pnFfG9xxdRc68XW2JiKOEOWloSiHLS1sHSynF0eByMbD/Q+wEBrv0+Hq+djbsmhDETNmFM6l5OcJfxqjP8fy+8jY3QU+nCZ/DuSeLpPafibAq+csDZ7OGPe2axf3caQ32f19o4RhVy8PihJFUcxLc6vhczCCkJiEgG8CRwHP55JL4LbAEWAqOAMuAbxpjwtPPEIU9ZBUPn+DsXefbv7/NxGS+voubdNEa2rAnrUmIDxXR2MP6ejbQkOHEfWNOnSUq64/hwLR3/kc7Ejs14uzxK7T6/gGdve4jz372RcfPCE3OsCrUk8AjwjjHmayKSACQBdwFLjTE/F5E7gDuAH4Z4nfjl8wbVVm7aw9Bvv72dt1cfz/KhheQ2tA14MglHHYTxeLodK5BU6+OHZf9OUnkQMxPY7HhmT6M9y0H6P8qOqk+JNUG3DohIOrAaGGO6nEREtgCzjTF7RCQf+Ksx5pgNvto6EL1sSUlgt+NrbgHf4GmzE4cDW1ISpqOj360fttRUWl/J5idFr3H3DdfgemtFhKIMr0i0DowG6oCnRWQqsBK4CcgzxuwJ7FMN5HV3sIjMBeYCuAm+n7qKLF9LS4+f2XOyafhKMY5WQ8rba8LWlOg9YwYHRrkY8o8avNt2hOWcRzIeT/AlDa+XyjX5XN9yKfl7IzieY4CEUtvjAGYAjxljpgPN+Iv+hwRKCN0WNYwx840xJcaYEifRMdJM9Y9nXAG33fs8x9+1BltO8K0Qh7HZ2TXPw6v3/ZLa2d3+/bCcr6WFortWMvySnbA89pdkC6UkUAlUGmOWB94vwp8EakQkv8vjQG2oQaro5Kg/yG3/+Aa2/Q7Gt/ZjyfCZU6g5MYUhq1qxfbjq8M+MD9fKFM6yf4/8cutH/HWcXULDuATy/7bvsGngTWcHxvrwwiLoJGCMqRaRChEZb4zZApwJbAx8zQF+Hvj+elgiVVHHu3U74+c6MD6Dtx/1BeXnprDm6keYtPAGij484kNjGPbQcsQmGK/FdRAi7PqWl0/PeIjTuZW8tdaGEymhtg7cADwXaBnYAVyJ/xHjJRG5CigHvhHiNVQYdX6lhJoTEhj+9xbkn6tDPl8wMzhnr/cy+a9zyVnVw5yJPi+ml6YIe1oatd+cjNcl5L9c6u9leKz9J42j4vwc0sp8pCxa0bdKTmNI+ziRGVxL4dbBO/w4pCRgjFkNHFXbiL9UoKJQ2VftbLv4txznvJ7Cf1oTQ8rLy0lZFNpCpJKTxQXX/42JiVUsWHYB9JIE9s3IYukNv+Tf1lyJvO7AtPetlJH76EfkPja4F03VHoNxJu8joShhHoWfWjzrYoi/VOZAIy+8fjpeF4yrqeh1Dsn0rc2c9Mb3Sd/swHRu7+fFoisBNH1zJvsm2Rj1ZhNmRegVkzqKUKlYIsLOF45n9alPcsp/30zuo31fx01HEUaBA5fPpH6aMPr1Vmz/WG11OD0Sl4vquSfQkm8oeqbusFGIymLGkPF2MsfvvpGxa3ruw9EfOopwoIhQf147Gy77DXUzortzlC3RTdE3tvL6ZQ/RUpRpdTjqCJnPfEzRLcvCUrELWhIYOMaQu8TFlJ03MnJF/+bsG2i+1jZ2PjuJC0fdiudcH7YzZjLu8dqI9d5T1tIkMIBSFy4jdaHVUfTOtLeT8/jH5OXlMuKNJq7I+Sf3vHU19m1WR6YiQZOA6pFpOsjKx6fxccZ0RpTuit5VnFRINAmoHvlaWshesAzEhqe/IwhtdjC+qGteCzsREFtMj7DUikHVI3taGjt+PpOtT03DPmlcn48zp0xj+7PHU3HXrEG95JctNZWd/zOTbQumYZ8cu9OjaxJQPUt0c+rp63n8i3+gIzel9/1FEGcCjaPd/OmU35Fych1iH7z/xcSVQMkXN7Pgi0/TnteH+xOltLOQ6pG4XBw8fxodKTaGvLuj9xl0Zk6h4jYfrU0uMla4SC/rxPXOpzFdVD4Wcblo/rdptKfZGPJOH+6PxbSzkOo3095O8ivLSaZvS7u3DXHzxIzf86PtF5N4U0PYpyiPNqa9naTFy0mib/cnWmkSUGGT8skufnDXtbj3efC1VPV+gIoKmgSijQj21FSwCd7Gg9FRlO5jTJ491aS+WA30MJ2UikqDt9YmRtlzctjy6Fjqn8vFPrHI6nAAsOcOYevvx1D3bB72CcEvBKKikyaBKCMJTr4wupzLRq3AmxwdzWvidnH55BX8fOIrtIxMxz5kiL8fgBoUNAlEGW9tPftuL+TN67+EbVOZ1eEcpsR1kK888Hf2PZOOfUyh1eGoMNE6gShjOjuQf67GDgO62Id9yBAkORFfbf3R04x7fWxozGdNaiKnpmyhOjeNUueoAYxORZImAYU4HGy6bzRfm7mCZfefSNKryw/73FtTx8Gbi7k/5UoAbK0ebDt1NNFgoUkgxtmSk5HCYUhLG57yiuBPlOhlQuIePnIePfmn6eyAlRsOe3bsWkqxud3IyAKkoxNP2a7BP15gkNE6gRjXevokTnpxA5t/moPN7Q7qHMbjYdL9e3n5W2eS/t6Wfh/vPWECRc+Vs+vhZOwZGUHFoKyjJQEFgGdHGQAD2SvBMXwY3vws7FX1ePZUD+CVVVdaEohxiX/byPJLJjPhR/VhWwuwv+wrN1N6+UgKb2nG24/l03dcNYprnl9C+ZwxkQtO9UpLAjHO19wMm8JUSSeCbfJ4vOluHBvL+7wkuq+tDYKYjNTeDpvahmEPYk1PcSbA1HEYhw3b2tJjLpyqjk1LAuoQm8tF+b0O5ix4g4OnFUf8eoXzN/HxRRMY/vSGfh9rH5ZH2q/3MOXRdVA8MgLRxQ8tCahDjDG01ifx9t7jcTRHvnbA29AAvZU2bHZkxkQ6Mly4V5fhrd/r3+7xsrF2KNXJaaR0xPIYPutpElCHmPZ2Jv5XKQ0JbhL2rY+KQUC2RDc1d3dy98TX+NUtl+F+w58EPLv3UDiv0z+oqW6vxVHGNk0C6jDevfusDuFwXi/7d2XwWPJsnE1d/uIbg7euzrq4BhFNAiqq+draGH/nRsThQJrWRkXpZLDRJKCinq+pyeoQBrWQWgdE5PsiskFE1ovICyLiFpHRIrJcREpFZKGIRMd4WKVUt4JOAiIyHLgRKDHGHAfYgUuAB4BfGWOKgAbgqnAEqlQ42McXsfeaWXR++QSrQ4kaofYTcACJIuIAkoA9wJeARYHPnwEuCvEaSoVN7WlDeOPHv6Ty6k6dGCUg6DoBY0yViDwI7AJagT8DK4H9xpjPqnErgeHdHS8ic4G5AG56XqXXXjyG3ecMJbXKS9Jrn0THnHuDnDgTaPz3GbTm2Bj2ZkVooxOjTNrODk7/6FrcK1L8KySpkB4HMoELgdHAMCAZOKevxxtj5htjSowxJU5cPe7XUJLLq7f9gs6r92JLcAYbruoHW3Iiudfu5OnbfkXz5KFWhxNWzvdXMvqyDeQ//LEOeQ4I5XHgy8BOY0ydMaYTWAycAmQEHg8ACoCQ5p5O29nCl967meYPcjEe7Rk2EExbO1vfG8vF795AYuUgrJn3eTUBdBFKE+EuYKaIJOF/HDgT+AT4APga8CIwB3g9pAiXrWXcMv9L/bENDF9bGyN++pH/tcWxqMgLuiRgjFmOvwLwU2Bd4FzzgR8Ct4hIKZANPBWGONUR7MVj2HX3ydTPm4W4en6cUqo3IXUWMsbcA9xzxOYdwImhnFf1rmVcNou/+yA/rvgqLQvdeNuDGI+rFNpjMGYllTZw4fO3krRHGNq60upwVAzTJBCjvFtKGX2XfyIPrStRodBJRZSKc5oElIpzmgSUinOaBJSKc5oElIpzmgSUinOaBJSKc5oElIpzmgSUinOaBJSKc5oElIpzmgRU1LFnZuIoGI7N7bY6lLigSUBFF5udrf81ntGv1tN4wVSro4kLmgRU1PFmeDgjfROeRP3vORB0KLGKLj4vE3/RwOMLLiZ7Wyk6t3TkaRJQUce7dTuyFU0AA0TLW0rFOU0CSsU5TQJKxTmtE4hx9uwsOo8biaOhFd+6Lbqohuo3LQnEuIOnFnHNE4upuNeOTdcfUEHQJBDjHM1eFtWW0FydjNFSgAqCPg7EuIS/rePgxelM7NyiC5CooGgSiHGmswNvXZ3VYUQNe2YmB08rxtHsJeHD9RhNjL3SxwE1qHgmjWTeL15h2E+2Y8/KtDqcmKAlATWo2A+08bN159Jan8TEjlKrw4kJmgTUoOLbsIWR33JhjNE6kj7q9XFARBaISK2IrO+yLUtE3hORbYHvmYHtIiK/EZFSEVkrIjMiGbxSRzEGX1ub1gX0Q1/qBP4POOeIbXcAS40xxcDSwHuAc4HiwNdc4LHwhKmUipRek4Ax5u/AviM2Xwg8E3j9DHBRl+1/MH7LgAwRyQ9TrEqpCAi2dSDPGLMn8LoayAu8Hg5UdNmvMrDtKCIyV0Q+EZFPOtGim1JWCbli0BhjRKTfXdWMMfOB+QBpkqVd3ZTqQft5X6CmxEnBB63YPlwV9vMHWxKo+ayYH/heG9heBYzosl9BYJtSKki7/s3Gpv98lMozEiNy/mCTwBJgTuD1HOD1LtuvCLQSzAQOdHlsiDmOkSOo+PHJVN90MrbUVKvDUXFq6N+FMa/OI++Tzoicv9fHARF5AZgN5IhIJXAP8HPgJRG5CigHvhHY/U/AeUAp0AJcGYGYB0zHqBwe/c7veW3/DLYtysXX1GR1SCoOpS5cRurCyJ2/1yRgjLm0h4/O7GZfA1wXalDRIqF8L9/7w3+ScACGNa6zOhylIkJ7DB6Dp2wXhfftAsBncSxKRYoOIFIqzmkSUCrOaRJQKs5pElAqzmkSUCrOaRJQKs5pElAqzmkSUCrOaRJQKs5pElAqzmkSUCrOaRJQKs5pElAqzukowm6IMwH7iGHg8+HZVQU+r9UhKRUxWhLohowfQ/IfmjjweweO4TpZshrcNAl0w7gdfDN3BecM2whOLSypwU2iYU17EakDmoF6q2PpQQ4aWzCiNbZojQsiG9tIY8yQIzdGRRIAEJFPjDElVsfRHY0tONEaW7TGBdbEpo8DSsU5TQJKxbloSgLzrQ7gGDS24ERrbNEaF1gQW9TUCSilrBFNJQGllAU0CSgV56IiCYjIOSKyRURKReQOC+MYISIfiMhGEdkgIjcFtmeJyHsisi3wPdPCGO0iskpE3gy8Hy0iywP3bqGIJFgUV4aILBKRzSKySURmRct9E5HvB36e60XkBRFxW3XfRGSBiNSKyPou27q9T4E1PX8TiHGtiMyIREyWJwERsQO/A84FJgGXisgki8LxALcaYyYBM4HrArHcASw1xhQDSwPvrXITsKnL+weAXxljioAG4CpLooJHgHeMMROAqfhjtPy+ichw4EagxBhzHGAHLsG6+/Z/wDlHbOvpPp0LFAe+5gKPRSQiY4ylX8As4N0u7+8E7rQ6rkAsrwNnAVuA/MC2fGCLRfEUBP6TfAl4ExD8vcsc3d3LAYwrHdhJoKK5y3bL7xswHKgAsvAPmHsTONvK+waMAtb3dp+Ax4FLu9svnF+WlwT4/If0mcrANkuJyChgOrAcyDOfL7FeDeRZFNavgdv5fGnEbGC/McYTeG/VvRsN1AFPBx5VnhSRZKLgvhljqoAHgV3AHuAAsJLouG+f6ek+DcjvRjQkgagjIinAK8DNxpjGrp8Zf0oe8HZVETkfqDXGrBzoa/eBA5gBPGaMmY5/HMhhRX8L71smcCH+RDUMSObo4njUsOI+RUMSqAJGdHlfENhmCRFx4k8AzxljFgc214hIfuDzfKDWgtBOAb4qImXAi/gfCR4BMkTks6GOVt27SqDSGLM88H4R/qQQDffty8BOY0ydMaYTWIz/XkbDfftMT/dpQH43oiEJrACKA7W1CfgrbZZYEYiICPAUsMkY83CXj5YAcwKv5+CvKxhQxpg7jTEFxphR+O/RX4wxlwMfAF+zOLZqoEJExgc2nQlsJAruG/7HgJkikhT4+X4Wm+X3rYue7tMS4IpAK8FM4ECXx4bwGeiKmh4qSs4DtgLbgf+yMI5T8RfF1gKrA1/n4X/2XgpsA94Hsiy+X7OBNwOvxwD/AkqBlwGXRTFNAz4J3LvXgMxouW/AfcBmYD3wR8Bl1X0DXsBfN9GJvwR1VU/3CX/F7+8Cvxfr8LdwhD0m7TasVJyLhscBpZSFNAkoFec0CSgV5zQJKBXnNAkoFec0CSgV5zQJKBXn/h/K3j5w6lIVDwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "H, W = img_size // patch_size, img_size // patch_size\n",
    "print(f\"Sequence length: {H}x{W} = {H * W}\")\n",
    "\n",
    "rand_pattern = torch.rand((H * W) ** 2).reshape(H * W, H * W) > 0.999\n",
    "\n",
    "gaus_2d_dist = AP.local_2d_gausian_distribution(H, W, sigma=16)\n",
    "sparsity = 0.995\n",
    "num_non_zeros = int((H * W) ** 2 * (1 - sparsity))\n",
    "random_gaus_2d_pattern = AP.random_pattern_from_probability_matrix(gaus_2d_dist, num_non_zeros)\n",
    "\n",
    "t_mask = rand_pattern | random_gaus_2d_pattern\n",
    "\n",
    "# and let's not forget to add a global attention for the cls_token\n",
    "mask = torch.ones((H * W + 1, H * W + 1), dtype=torch.bool)\n",
    "mask[1:, 1:] = t_mask\n",
    "\n",
    "print(f\"Sparsity: {1 - mask.float().mean().item()}, nnz={num_non_zeros}\")\n",
    "\n",
    "plt.imshow(mask[H * W // 2 + W // 2][1:].reshape(H, W))\n",
    "plt.show()\n",
    "\n",
    "mask = SparseCS(mask, torch.device(\"cuda\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ddf7b6e9-95c3-465e-9a56-c813c30dd943",
   "metadata": {},
   "source": [
    "And now, as before, replace the dense attentions with the sparse ones"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "6cd67fee-1736-4d6b-b63b-0ef087be9fc7",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_sparse = replace_attn_with_xformers_one(model_sparse, mask)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "67357795-a78e-43fa-a4f9-3a856d993370",
   "metadata": {},
   "source": [
    "Now create a random input and let's feed it to our model and benchmark"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "6ea14f36-2384-428e-888e-26c7004748a2",
   "metadata": {},
   "outputs": [],
   "source": [
    "i = torch.rand(8, 3, img_size, img_size).cuda()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "d9bf472b-227f-441a-864d-8baa9658cda2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Forward only\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7fbea8033d00>\n",
      "profile\n",
      "  Median: 194.43 ms\n",
      "  IQR:    0.94 ms (193.73 to 194.67)\n",
      "  11 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 8022.40283203125 MB\n",
      "\n",
      "Forward + backward\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7fbdf04af4f0>\n",
      "profile\n",
      "  Median: 633.81 ms\n",
      "  IQR:    3.66 ms (632.41 to 636.07)\n",
      "  4 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 8207.640625 MB\n"
     ]
    }
   ],
   "source": [
    "print(\"Forward only\")\n",
    "profile_model(lambda : model_sparse(i))\n",
    "print(\"\")\n",
    "print(\"Forward + backward\")\n",
    "profile_model(lambda : model_sparse(i).sum().backward())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a3703edc-d2c6-4ebd-946c-219cd8a17153",
   "metadata": {},
   "source": [
    "By using a very sparse matrix for the self-attention computation, we were able to run ViT with sequence length of 10k by using ~8GB of GPU memory for a batch size of 8.\n",
    "The speed / memory can be easily tuned by controlling the degree of sparsity of your `attn_mask`.\n",
    "\n",
    "# Wrapping up\n",
    "\n",
    "In this notebook, we've show one way of quickly getting started with using xformers in your codebase.\n",
    "We showed how to get both memory and speed savings by leveraging sparse computations, and we also showed that it is possible to runa full forward+backward on a ViT model whose sequence length is greater than 10k.\n",
    "\n",
    "We hope that xformers can enable new research directions on very large sequences.\n",
    "\n",
    "If you have questions, we will be happy to help you getting started with xformers!"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}