File size: 71,697 Bytes
e202b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e69e9896-4be5-4706-9b49-cb772d02e8d4",
   "metadata": {},
   "source": [
    "# Swin Transformers as a special sparsity pattern\n",
    "\n",
    "In this notebook, we will show how the recently-introduced [Swin Transformers](https://arxiv.org/abs/2103.14030) can be cast\n",
    "as a sparse transformer with a particular sparsity pattern.\n",
    "\n",
    "\n",
    "Swin Transformers is a hierarchical Transformer whose representation is computed with shifted windows.\n",
    "The shifted windowing scheme brings efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection\n",
    "\n",
    "<img src=\"https://github.com/microsoft/Swin-Transformer/raw/main/figures/teaser.png\" alt=\"drawing\" width=\"50%\"/>\n",
    "\n",
    "\n",
    "In this notebook, we will cover:\n",
    "- what type of self-attention is needed to replicate a Swin Transformer\n",
    "- we will show how one can modify their pre-trained Swin Transformer to use the sparse kernels from xformers instead of hand writing the Swin Transformer self-attention by hand.\n",
    "\n",
    "Let's start with a few imports. In this notebook, the vanilla Swin Transformer will be taken from `timm`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1beec17c-cdec-4c54-afca-61423c1aab58",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import copy\n",
    "import torch\n",
    "from torch import nn\n",
    "from torch.utils import benchmark\n",
    "\n",
    "import xformers.components.attention.attention_patterns as AP\n",
    "from xformers.components.attention.core import scaled_dot_product_attention\n",
    "from xformers.components.attention._sputnik_sparse import SparseCS\n",
    "\n",
    "import timm\n",
    "\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9072a48e-ba89-4093-ae7e-22706602f11e",
   "metadata": {},
   "source": [
    "## What sparsity pattern does Swin Transformer correspond to?\n",
    "\n",
    "In xformers, we provide for reference a default implementation of the attention pattern that corresponds to the Swin Transformer architecture.\n",
    "\n",
    "It can be found together with the other attention patterns in `xformers.components.attention.attention_patterns`.\n",
    "\n",
    "Let's try it out on the example case from above, on an image of size 8x8, and windows of size 4:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "57323b78-3b3b-457a-95d8-1f55fdcdddd6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAD6CAYAAABeQBU0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAHZUlEQVR4nO3dsW4VRxiG4T0hSJELChQKIlmhoiQpkLkACt8sN3AkuACQkCyXR2lo0iQQiShWkmZSpALZu94Zjdef53lK2+vfxTm8GuTfsyulTABAlm+2/gEAgPUEHAACCTgABBJwAAgk4AAQSMABINC3a774+4f3ypPj+1WDDudHVc89fXZR9ZyZjObv6a/p3/LPbu1zc+/rXq+tude71zN86c/pj99LKY++/viqgD85vj+92x9X/QCnP/xc9dx+f1b1nJmM5m15U/Xc3Pu612tr7vXu9Qxfel1efbjs4/4LHQACCTgABBJwAAgk4AAQaNUvsQF3z+H86MpfHNv/elb9fed+GW3uc71mwl3jBA4AgQQcAAIJOAAEEnAACCTgABBIwAEgkIADQKBVe+Bz+6JLanc7W/Y6zew3E4BtOYEDQCABB4BAAg4AgQQcAAIJOAAEEnAACOQ6UeBKvdYba68a7TUTEjmBA0AgAQeAQAIOAIEEHAACCTgABBJwAAi0ao3s6bOLab8/qxp007eYmQnXM/e+bnltzT3ba93Le4GROIEDQCABB4BAAg4AgQQcAAIJOAAEEnAACOQ2Mhjc4fzoyvWrXuuNtStmLTPhrnECB4BAAg4AgQQcAAIJOAAEEnAACCTgABBIwAEg0Ko98Ll90SW1u50te51m9psJwLacwAEgkIADQCABB4BAAg4AgQQcAAIJOAAEcp0ocKVe6421V432mgmJnMABIJCAA0AgAQeAQAIOAIEEHAACCTgABFq1Rvb02cW0359VDbrpW8zMhG1t8bqcm7n0Huvx844yc2muf6P6cAIHgEACDgCBBBwAAgk4AAQScAAIJOAAEEjAASCQ60SBISztItf+LYaWq1Hvysylz/eaOToncAAIJOAAEEjAASCQgANAIAEHgEACDgCBVq2RHc6Pbvy6zJY1AjP7zQRgW07gABBIwAEgkIADQCABB4BAAg4AgQQcAAK5jQxgql+rnFvjbLnBK2nm0vfdYuYInMABIJCAA0AgAQeAQAIOAIEEHAACCTgABNqVUq79xc9/+q682x9XDbrpW8zMZDRvy5vpc/m0W/vcg93D8mL3ssePdKtssZI0ysyluf6NavO6vHpfSnn+9cedwAEgkIADQCABB4BAAg4AgQQcAAIJOAAEEnAACOQ6UWAIS7vItX+LoeUazbsyc+nzvWaOzgkcAAIJOAAEEnAACCTgABBIwAEgkIADQKBVa2SH86Mbvy6zZY3AzH4zAdiWEzgABBJwAAgk4AAQSMABIJCAA0AgAQeAQG4jA5jq1yrn1jhbbvBKmrn0fbeYOQIncAAIJOAAEEjAASCQgANAIAEHgEACDgCBdqWUa3/xg93D8mL3suOPw02qvcVsmvJuTxth5tvyZvpcPu3WPjfK+3qLlaRRZi7NHX3dq9Xr8up9KeX51x93AgeAQAIOAIEEHAACCTgABBJwAAgk4AAQSMABIJDrRIEhLO0i99jbH2Xm0ue3+DsMI3ACB4BAAg4AgQQcAAIJOAAEEnAACCTgABDIGtnAtrgqs2WumfNOTi+qngMyOYEDQCABB4BAAg4AgQQcAAIJOAAEEnAACGSNDGDqs/bXcoNX0syl77vFzBE4gQNAIAEHgEACDgCBBBwAAgk4AAQScAAIJOAAEMge+MC2uCqzZa6Z8w7lY9Vzo+i1Uzz33Cgzl+b2mjk6J3AACCTgABBIwAEgkIADQCABB4BAAg4AgayRAUNoWYOq/b6jzFz6/BZrnCNwAgeAQAIOAIEEHAACCTgABBJwAAgk4AAQyBrZwLa4aatlrpnzTk4vqp4DMjmBA0AgAQeAQAIOAIEEHAACCTgABBJwAAhkjQxg6rP213KDV9LMpe+7xcwROIEDQCABB4BAAg4AgQQcAAIJOAAEEnAACCTgABDIHvjAtrgqs2WumfMO5WPVc7TZYhfZzP+17MPX2mLmVZzAASCQgANAIAEHgEACDgCBBBwAAgk4AASyRgZApLm1rV5rslvMvIoTOAAEEnAACCTgABBIwAEgkIADQCABB4BA1sgGtsVNWy1zzZx3cnpR9RyQyQkcAAIJOAAEEnAACCTgABBIwAEgkIADQCABB4BA9sABuHN6/Z2L2qtGW2bee3z5x53AASCQgANAIAEHgEACDgCBBBwAAgk4AASyRjawLa7KbJlr5rxD+Vj1HKSqXfdaMvfsFjOn6ZdLP+oEDgCBBBwAAgk4AAQScAAIJOAAEEjAASCQNTIAItWue7V83y1mXsUJHAACCTgABBJwAAgk4AAQSMABIJCAA0Aga2QD2+KmrZa5Zs47Ob2oeg7I5AQOAIEEHAACCTgABBJwAAgk4AAQSMABIJCAA0Age+AA3Dm9/s5F7VWjLTPvPb78407gABBIwAEgkIADQCABB4BAAg4AgQQcAALtSinX/+Ld7rdpmj70+3GABj+WUh6tfcj7Gm69S9/bqwIOANwO/gsdAAIJOAAEEnAACCTgABBIwAEgkIADQCABB4BAAg4AgQQcAAL9B2NyMknQIrs/AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 504x1008 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "H, W = 8, 8\n",
    "window_size = 4\n",
    "\n",
    "mask = AP.swin_attention_pattern(H, W, window_size, shift_size=0)\n",
    "mask_shifted = AP.swin_attention_pattern(H, W, window_size, shift_size=2)\n",
    "\n",
    "fig = plt.figure(figsize=(7, 14))\n",
    "ax = fig.add_subplot(1, 2, 1)\n",
    "ax.imshow(mask)\n",
    "plt.xticks([])\n",
    "plt.yticks([])\n",
    "ax = fig.add_subplot(1, 2, 2)\n",
    "ax.imshow(mask_shifted)\n",
    "plt.xticks([])\n",
    "plt.yticks([])\n",
    "fig.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "26ca8db6-9897-4239-89fb-f48b1f0d75b8",
   "metadata": {},
   "source": [
    "Now let's visualize the self-attention for every pixel in the image. Every sub-image corresponds to the self-attention for one pixel"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "10fe9b1e-a443-4c54-a141-d3d08969efe6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANYCAYAAAAolBclAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABD9ElEQVR4nO3dwWpcSZY/4Ii/a9piCgkkqhceMMzCdO3sgRTWA0jgF9Az5EP1M+gFBNIDyNhg964bL2Yw2JsaNajpxtWDif+iE3EXSSoiK+7NCN3vg1okHJ8KxdEvM0+R5YwppQAAAMBv8/92fQAAAIDHwHIFAABQgeUKAACgAssVAABABZYrAACACn4oKf7p6En6z+f/llX7/k+/hsXLp9m9S+q36b0fDrNq/xb+ml07dv238Pfwz/RrzG6+UjKnEMa/+5LeY93lBHP9JaX0++w/sCJT09bL1GZj3v1UmfpdfJr2wo9jnWnU3/uW8p1b/9+f/y/8cvu9OFMlcwqhnef7P7z8RzN3v0XvrjNVWi9Tm7Xy/PcYMxVL/ir241d76e3l86zaJ88+he9fX2T3LqnfpvdZPM+qvUoX2bVj19+k63CXbosDVjKnEMa/+5LeY93lBHN9n1I6zv4DKzI1bb1MbTbm3U+VqYN4lE7i6VhnGvX3vqV859a/fvM5vPv4rThTJXMKoZ3n+8svH5q5+y16d52p0nqZ2qyV57/HmCkfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQQUwpbS6IcRlCWK4eLkY/Eff2w2G4S7cxp9acdu59Suk4p9CsdkemuiJTHVi8fBreffwmU32QqQ7IVFfWZurB5Wro+NVeenv5PKv2ybNP4fvXF9m9S+q36X0Wz7Nqr9JFdu3Y9TfpOvuN4FDJnEIY/+5Leo91lxPMNftFa0impq2Xqc3GvPupMnUQj9JJPB3rTKP+3reU79z6128+Z78RHCqZUwjtPN9ffvnQzN1v0bvrTJXWy9RmrTz/PcZM+VggAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5ergY/UTc2w+H4S7dZn1Ltznt3Npv6V7HrHZHproiUx1YvHwa3n38JlN9kKkOyFRX1mbqweVq6PjVXnp7+Tyr9smzT+H71xfZvUvqt+l9Fs+zaq/SRXbt2PU36Tr7jeBQyZxCGP/uS3qPdZcTzDX7RWtIpqatl6nNxrz7qTJ1EI/SSTwd60yj/t63lO/c+tdvPme/ERwqmVMI7TzfX3750Mzdb9G760yV1svUZq08/z3GTPlYIAAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKYkppc0GMyxDCcvVwMfqJuLcfDsNduo05tea0c+9TSsc5hWa1OzLVFZnqwOLl0/Du4zeZ6oNMdUCmurI2Uw8uV0PHr/bS28vnWbVPnn0K37++yO5dUr9N77N4nlV7lS6ya8euv0nX2W8Eh0rmFML4d1/Se6y7nGCu2S9aQzI1bb1MbTbm3U+VqYN4lE7i6VhnGvX3vqV859a/fvM5+43gUMmcQmjn+f7yy4dm7n6L3l1nqrRepjZr5fnvMWbKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKvihpPgvf/r38OY//iuz+lNBbWl9ee85KZtTCGPffUnvuZGpPsgUU+jxd+wv6X8L+vbvX/fSxt173n5YS3cvU+s9xkzFlNLGPxZjXIYQlquHi4J/I7/RfjgMd+k25tSa0869Tykd5xSa1e7IVFdkqgMy1RWZ6oBMdWVtph5croYO4lE6iadZtVfpIpzF8+zeJfW99i6tv0nX2QEbKplT6Zl6vfsJ5pr9ojUkU9PWy1RXZ5GpDs4yt0y1dJa5Zaq0vtfeLWaqtH5Gvddmyv9zBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYfa3dJvTzq39lu51zGp3ZKorMtUBmeqKTHVAprqyNlMPLldDB/EoncTTrNqrdBHO4nl275L6XnuX1t+k6+yADZXMqfRMvd79BHPNftEakqlp62Wqq7PIVAdnmVumWjrL3DJVWt9r7xYzVVo/o95rM+VjgQAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqiCmlzQUxLkMIy9XDxegn4t5+OAx36Tbm1JrTzr1PKR3nFJrV7shUV2SqAzLVFZnqgEx1ZW2mHlyuhg7iUTqJp1m1V+kinMXz7N4l9b32Lq2/SdfZARsqmVPpmXq9+wnmmv2iNSRT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912bKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjjM/pZuc9q5td/SvY5Z7Y5MdUWmOiBTXZGpDshUV9Zm6sHlauggHqWTeJpVe5Uuwlk8z+5dUt9r79L6m3SdHbChkjmVnqnXu59grtkvWkMyNW29THV1Fpnq4Cxzy1RLZ5lbpkrre+3dYqZK62fUe22mfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5evhzCOHPmb1/CiH8UnCWkvpee5fW/5xS2s8p/A1zKj1Tr3c/9lynmFWv9yNT9Wpb6j32WWSqj7PMLVMtnWVumSqt77V3i5kqrZ9L7/WzSimN8k8I4d1Y9b32HvssU8yqpZ+3ld5TzarX+2np7mXq8Z5l7Dm19vO2cpa5Zaqls8wtUy3dT0u9W5zV3Hv7WCAAAEAFlisAAIAKxlyu/jhifa+9S+tLe2+rlfvptfc29dvo9X5aunuZ2l29TO2uvqXe22rl5y2t77X3ttz99L231dLP8Kh6P/gXWgAAAPAwHwsEAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVPBDSfFPR0/Sfz7/t6za93/6NSxePs3uXVK/Te/9cJhV+7fw1+zaseu/hb+Hf6ZfY3bzlZI5hTD+3Zf0HusuJ5jrLyml32f/gRWZmrZepjYb8+6nytTv4tO0F34c60yj/t63lO/c+v/+/H/hl9vvxZkqmVMI7Tzf/+HlP5q5+y16d52p0nqZ2qyV57/HmKmYUspucvxqL729fJ5V++TZp/D964vs3iX12/Q+i+dZtVfpIrt27PqbdB3u0m1xwErmFML4d1/Se6y7nGCu71NKx9l/YEWmpq2Xqc3GvPupMnUQj9JJPB3rTKP+3reU79z6128+h3cfvxVnqmROIbTzfH/55UMzd79F764zVVovU5u18vz3GDPlY4EAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjgMd+k25tSa0869Tykd5xSa1e7IVFdkqgOLl0/Du4/fZKoPMtUBmerK2kw9uFwNHb/aS28vn2fVPnn2KXz/+iK7d0n9Nr3P4nlW7VW6yK4du/4mXWe/ERwqmVMI4999Se+x7nKCuWa/aA3J1LT1MrXZmHc/VaYO4lE6iadjnWnU3/uW8p1b//rN5+w3gkMlcwqhnef7yy8fmrn7LXp3nanSepnarJXnv8eYKR8LBAAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKggppQ2F8S4DCEsVw8Xo5+Ie/vhMNyl26xv6TannVv7Ld3rmNXuyFRXZKoDi5dPw7uP32SqDzLVAZnqytpMPbhcDR2/2ktvL59n1T559il8//oiu3dJ/Ta9z+J5Vu1VusiuHbv+Jl1nvxEcKplTCOPffUnvse5ygrlmv2gNydS09TK12Zh3P1WmDuJROomnY51p1N/7lvKdW//6zefsN4JDJXMKoZ3n+8svH5q5+y16d52p0nqZ2qyV57/HmCkfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQQUwpbS6IcRlCWK4eLkY/Eff2w2G4S7cxp9acdu59Suk4p9CsdkemuiJTHVi8fBreffwmU32QqQ7IVFfWZurB5Wro+NVeenv5PKv2ybNP4fvXF9m9S+q36X0Wz7Nqr9JFdu3Y9TfpOvuN4FDJnEIY/+5Leo91lxPMNftFa0impq2Xqc3GvPupMnUQj9JJPB3rTKP+3reU79z6128+Z78RHCqZUwjtPN9ffvnQzN1v0bvrTJXWy9RmrTz/PcZM+VggAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIIfSor/8qd/D2/+478yqz8V1JbWl/eek7I5hTD23Zf0nhuZ6oNMMYUef8f+kv63oG///nUvbdy95+2HtXT3MrXeY8xUTClt/GMxxmUIYbl6uCj4N/Ib7YfDcJdus76l25x2bu23dK9jVrsjU12RqQ7IVFdkqgMy1ZW1mXpwuRo6iEfpJJ5m1V6li3AWz7N7l9T32ru0/iZdZwdsqGROpWfq9e4nmGv2i9aQTE1bL1NdnUWmOjjL3DLV0lnmlqnS+l57t5ip0voZ9V6bKf/PFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKYkppc0GMyxDCcvVwMfqJuLcfDsNduo05tea0c+9TSsc5hWa1OzLVFZnqgEx1RaY6IFNdWZupB5eroYN4lE7iaVbtVboIZ/E8u3dJfa+9S+tv0nV2wIZK5lR6pl7vfoK5Zr9oDcnUtPUy1dVZZKqDs8wtUy2dZW6ZKq3vtXeLmSqtn1HvtZnysUAAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACmJKaXNBjMsQwnL1cDH6ibi3Hw6zv6XbnHZu7bd0r2NWuyNTXZGpDshUV2SqAzLVlbWZenC5GjqIR+kknmbVXqWLcBbPs3uX1Pfau7T+Jl1nB2yoZE6lZ+r17ieYa/aL1pBMTVsvU12dRaY6OMvcMtXSWeaWqdL6Xnu3mKnS+hn1XpspHwsEAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUEFMKW0uiHEZQliuHi5GPxH39sNhuEu3MafWnHbufUrpOKfQrHZHproiUx2Qqa7IVAdkqitrM/XgcjV0EI/SSTzNqr1KF+Esnmf3LqnvtXdp/U26zg7YUMmcSs/U691PMNfsF60hmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh7+HEL4c2bvn0IIvxScpaS+196l9T+nlPZzCn/DnErP1Ovdjz3XKWbV6/3IVL3alnqPfRaZ6uMsc8tUS2eZW6ZK63vt3WKmSuvn0nv9rFJKo/wTQng3Vn2vvcc+yxSzaunnbaX3VLPq9X5aunuZerxnGXtOrf28rZxlbplq6Sxzy1RL99NS7xZnNffePhYIAABQgeUKAACggjGXqz+OWN9r79L60t7bauV+eu29Tf02er2flu5epnZXL1O7q2+p97Za+XlL63vtvS13P33vbbX0Mzyq3g/+hRYAAAA8zMcCAQAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACr4oaT4p6Mn6T+f/1tW7fs//RoWL59m9y6p36b3fjjMqv1b+Gt27dj138Lfwz/TrzG7+UrJnEIY/+5Leo91lxPM9ZeU0u+z/8CKTE1bL1ObjXn3U2Xqd/Fp2gs/jnWmUX/vW8p3bv1/f/6/8Mvt9+JMlcwphHae7//w8h/N3P0WvbvOVGm9TG3WyvPfY8xUTCllNzl+tZfeXj7Pqn3y7FP4/vVFdu+S+m16n8XzrNqrdJFdO3b9TboOd+m2OGAlcwph/Lsv6T3WXU4w1/cppePsP7AiU9PWy9RmY979VJk6iEfpJJ6OdaZRf+9byndu/es3n8O7j9+KM1UypxDaeb6//PKhmbvfonfXmSqtl6nNWnn+e4yZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgApiSmlzQYzLEMJy9XAx+om4tx8Ow126zfqWbnPaubXf0r2OWe2OTHVFpjqwePk0vPv4Tab6IFMdkKmurM3Ug8vV0PGrvfT28nlW7ZNnn8L3ry+ye5fUb9P7LJ5n1V6li+zasetv0nX2G8GhkjmFMP7dl/Qe6y4nmGv2i9aQTE1bL1ObjXn3U2XqIB6lk3g61plG/b1vKd+59a/ffM5+IzhUMqcQ2nm+v/zyoZm736J315kqrZepzVp5/nuMmfKxQAAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVxJTS5oIYlyGE5erhYvQTcW8/HIa7dBtzas1p596nlI5zCs1qd2SqKzLVgcXLp+Hdx28y1QeZ6oBMdWVtph5croaOX+2lt5fPs2qfPPsUvn99kd27pH6b3mfxPKv2Kl1k145df5Ous98IDpXMKYTx776k91h3OcFcs1+0hmRq2nqZ2mzMu58qUwfxKJ3E07HONOrvfUv5zq1//eZz9hvBoZI5hdDO8/3llw/N3P0WvbvOVGm9TG3WyvPfY8yUjwUCAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVBBTSpsLYlyGEJarh4vRT8S9/XAY7tJt1rd0m9POrf2W7nXMandkqisy1YHFy6fh3cdvMtUHmeqATHVlbaYeXK6Gjl/tpbeXz7Nqnzz7FL5/fZHdu6R+m95n8Tyr9ipdZNeOXX+TrrPfCA6VzCmE8e++pPdYdznBXLNftIZkatp6mdpszLufKlMH8SidxNOxzjTq731L+c6tf/3mc/YbwaGSOYXQzvP95ZcPzdz9Fr27zlRpvUxt1srz32PMlI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFTwQ0nxX/707+HNf/xXZvWngtrS+vLec1I2pxDGvvuS3nMjU32QKabQ4+/YX9L/FvTt37/upY2797z9sJbuXqbWe4yZiimljX8sxrgMISxXDxcF/0Z+o/1wGO7SbcypNaede59SOs4pNKvdkamuyFQHZKorMtUBmerK2kw9uFwNHcSjdBJPs2qv0kU4i+fZvUvqe+1dWn+TrrMDNlQyp9Iz9Xr3E8w1+0VrSKamrZeprs4iUx2cZW6Zauksc8tUaX2vvVvMVGn9jHqvzZT/5woAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Psb+k2p51b+y3d65jV7shUV2SqAzLVFZnqgEx1ZW2mHlyuhg7iUTqJp1m1V+kinMXz7N4l9b32Lq2/SdfZARsqmVPpmXq9+wnmmv2iNSRT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912bKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVBBTSpsLYlyGEJarh4vRT8S9/XAY7tJtzKk1p517n1I6zik0q92Rqa7IVAdkqisy1QGZ6sraTD24XA0dxKN0Ek+zaq/SRTiL59m9S+p77V1af5OuswM2VDKn0jP1evcTzDX7RWtIpqatl6muziJTHZxlbplq6Sxzy1Rpfa+9W8xUaf2Meq/NlI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKggppQ2F8S4DCEsVw8Xo5+Ie/vhMNyl25hTa0479z6ldJxTaFa7I1NdkakOyFRXZKoDMtWVtZl6cLkaOohH6SSeZtVepYtwFs+ze5fU99q7tP4mXWcHbKhkTqVn6vXuJ5hr9ovWkExNWy9TXZ1Fpjo4y9wy1dJZ5pap0vpee7eYqdL6GfVemykfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACoIKaUNhfEuAwhLFcPfw4h/Dmz908hhF8KzlJS32vv0vqfU0r7OYW/YU6lZ+r17see6xSz6vV+ZKpebUu9xz6LTPVxlrllqqWzzC1TpfW99m4xU6X1c+m9flYppVH+CSG8G6u+195jn2WKWbX087bSe6pZ9Xo/Ld29TD3es4w9p9Z+3lbOMrdMtXSWuWWqpftpqXeLs5p7bx8LBAAAqMByBQAAUMGYy9UfR6zvtXdpfWnvbbVyP7323qZ+G73eT0t3L1O7q5ep3dW31Htbrfy8pfW99t6Wu5++97Za+hkeVe8H/0ILAAAAHuZjgQAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKfigp/unoSfrP5/+WVfv+T7+Gxcun2b1L6rfpvR8Os2r/Fv6aXTt2/bfw9/DP9GvMbr5SMqcQxr/7kt5j3eUEc/0lpfT77D+wIlPT1svUZmPe/VSZ+l18mvbCj2OdadTf+5bynVv/35//L/xy+704UyVzCqGd5/s/vPxHM3e/Re+uM1VaL1ObtfL89xgzFVNK2U2OX+2lt5fPs2qfPPsUvn99kd27pH6b3mfxPKv2Kl1k145df5Ouw126LQ5YyZxCGP/uS3qPdZcTzPV9Suk4+w+syNS09TK12Zh3P1WmDuJROomnY51p1N/7lvKdW//6zefw7uO34kyVzCmEdp7vL798aObut+jddaZK62Vqs1ae/x5jpnwsEAAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFMaW0uSDGZQhhuXq4GP1E3NsPh+Eu3cacWnPaufcppeOcQrPaHZnqikx1YPHyaXj38ZtM9UGmOiBTXVmbqQeXq6HjV3vp7eXzrNonzz6F719fZPcuqd+m91k8z6q9ShfZtWPX36Tr7DeCQyVzCmH8uy/pPdZdTjDX7BetIZmatl6mNhvz7qfK1EE8SifxdKwzjfp731K+c+tfv/mc/UZwqGROIbTzfH/55UMzd79F764zVVovU5u18vz3GDPlY4EAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFcSU0uaCGJchhOXq4WL0E3FvPxyGu3Sb9S3d5rRza7+lex2z2h2Z6opMdWDx8ml49/GbTPVBpjogU11Zm6kHl6uh41d76e3l86zaJ88+he9fX2T3LqnfpvdZPM+qvUoX2bVj19+k6+w3gkMlcwph/Lsv6T3WXU4w1+wXrSGZmrZepjYb8+6nytRBPEon8XSsM436e99SvnPrX7/5nP1GcKhkTiG083x/+eVDM3e/Re+uM1VaL1ObtfL89xgz5WOBAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqIKaXNBTEuQwjL1cPF6Cfi3n44DHfpNubUmtPOvU8pHecUmtXuyFRXZKoDi5dPw7uP32SqDzLVAZnqytpMPbhcDR2/2ktvL59n1T559il8//oiu3dJ/Ta9z+J5Vu1VusiuHbv+Jl1nvxEcKplTCOPffUnvse5ygrlmv2gNydS09TK12Zh3P1WmDuJROomnY51p1N/7lvKdW//6zefsN4JDJXMKoZ3n+8svH5q5+y16d52p0nqZ2qyV57/HmCkfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACo4IeS4r/86d/Dm//4r8zqTwW1pfXlveekbE4hjH33Jb3nRqb6IFNMocffsb+k/y3o279/3Usbd+95+2Et3b1MrfcYMxVTShv/WIxxGUJYrh4uCv6N/Eb74TDcpduYU2tOO/c+pXScU2hWuyNTXZGpDshUV2SqAzLVlbWZenC5GjqIR+kknmbVXqWLcBbPs3uX1Pfau7T+Jl1nB2yoZE6lZ+r17ieYa/aL1pBMTVsvU12dRaY6OMvcMtXSWeaWqdL6Xnu3mKnS+hn1Xpsp/88VAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5ergY/UTc2w+H2d/SbU47t/Zbutcxq92Rqa7IVAdkqisy1QGZ6sraTD24XA0dxKN0Ek+zaq/SRTiL59m9S+p77V1af5OuswM2VDKn0jP1evcTzDX7RWtIpqatl6muziJTHZxlbplq6Sxzy1Rpfa+9W8xUaf2Meq/NlI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKggppQ2F8S4DCEsVw8Xo5+Ie/vhMNyl25hTa0479z6ldJxTaFa7I1NdkakOyFRXZKoDMtWVtZl6cLkaOohH6SSeZtVepYtwFs+ze5fU99q7tP4mXWcHbKhkTqVn6vXuJ5hr9ovWkExNWy9TXZ1Fpjo4y9wy1dJZ5pap0vpee7eYqdL6GfVemykfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACoIKaUNhfEuAwhLFcPF6OfiHv74TD7W7rNaefWfkv3Oma1OzLVFZnqgEx1RaY6IFNdWZupB5eroYN4lE7iaVbtVboIZ/E8u3dJfa+9S+tv0nV2wIZK5lR6pl7vfoK5Zr9oDcnUtPUy1dVZZKqDs8wtUy2dZW6ZKq3vtXeLmSqtn1HvtZnysUAAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFcSU0uaCGJchhOXq4c8hhD9n9v4phPBLwVlK6nvtXVr/c0ppP6fwN8yp9Ey93v3Yc51iVr3ej0zVq22p99hnkak+zjK3TLV0lrllqrS+194tZqq0fi69188qpTTKPyGEd2PV99p77LNMMauWft5Wek81q17vp6W7l6nHe5ax59Taz9vKWeaWqZbOMrdMtXQ/LfVucVZz7+1jgQAAABVYrgAAACoYc7n644j1vfYurS/tva1W7qfX3tvUb6PX+2np7mVqd/Uytbv6lnpvq5Wft7S+197bcvfT995WSz/Do+r94F9oAQAAwMN8LBAAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQwQ8lxb+LT9Ne+DGr9m/hr2E/HGb3LqnvtXdp/bfw9/DP9GvMbr5SMqfSM/V69xPM9ZeU0u+z/8CKTE1bL1NdnUWmOjjL3DLV0lnmlqnS+l57t5ip0voZ9V6bqaLlai/8GE7iaVbtVbrIri2t77V3af1Nus7uO1Qyp9Iz9Xr3E8z1f7KLB2Rq2nqZ6uosMtXBWeaWqZbOMrdMldb32rvFTJXWz6j32kz5WCAAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACmJKaXNBjMsQwnL1cDH6ibi3Hw7DXbqNObXmtHPvU0rHOYVmtTsy1RWZ6oBMdUWmOiBTXVmbqQeXq6GDeJRO4mlW7VW6CGfxPLt3SX2vvUvrb9J1dsCGSuZUeqZe736CuWa/aA3J1LT1MtXVWWSqg7PMLVMtnWVumSqt77V3i5kqrZ9R77WZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgApiSmlzQYzLEMJy9XAx+om4tx8Os7+l25x2bu23dK9jVrsjU12RqQ7IVFdkqgMy1ZW1mXpwuRo6iEfpJJ5m1V6li3AWz7N7l9T32ru0/iZdZwdsqGROpWfq9e4nmGv2i9aQTE1bL1NdnUWmOjjL3DLV0lnmlqnS+l57t5ip0voZ9V6bKR8LBAAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLtzGn1px27n1K6Tin0Kx2R6a6IlMdkKmuyFQHZKorazP14HI1dBCP0kk8zaq9ShfhLJ5n9y6p77V3af1Nus4O2FDJnErP1OvdTzDX7BetIZmatl6mujqLTHVwlrllqqWzzC1TpfW99m4xU6X1M+q9NlM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACo4IeS4j+8/Ee4vPyQVfvkWQiXX/JqS+u36T0nJXMKYfy7L+k9NzLVB5liCi3lO7f+9Zt/ZPd9DC6/fGjm7j1vP6ylu5ep9R5jpmJKaeMfjDEuQwjL1cNF9r+R32w/HGZ/S7c57dzab+lex6x2R6a6IlMdWLx8Gt59/CZTfZCpDshUV9Zm6sHlauj41V56e/k8q/bJs0/h+9cX2b1L6rfpfRbPs2qv0kV27dj1N+k6+43gUMmcQhj/7kt6j3WXE8w1+0VrSKamrZepzca8+6kydRCP0kk8HetMo/7et5Tv3PrXbz5nvxEcKplTCO083//rv7K3cfdb9O46U6X1MrVZK89/jzFT/p8rAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABXElNLmghiXIYTl6uFi9BNxbz8chrt0G3NqzWnn3qeUjnMKzWp3ZKorMtWBxcun4d3HbzLVB5nqgEx1ZW2mHlyuho5f7aW3l8+zap88+xS+f32R3bukfpveZ/E8q/YqXWTXjl1/k66z3wgOlcwphPHvvqT3WHc5wVyzX7SGZGraepnabMy7nypTB/EoncTTsc406u99S/nOrX/95nP2G8GhkjmF0M7z/eWXD83c/Ra9u85Uab1MbdbK899jzJSPBQIAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUEFNKmwtiXIYQlquHi9FPxL39cBju0m3Wt3Sb086t/Zbudcxqd2SqKzLVgcXLp+Hdx28y1QeZ6oBMdWVtph5croaOX+2lt5fPs2qfPPsUvn99kd27pH6b3mfxPKv2Kl1k145df5Ous98IDpXMKYTx776k91h3OcFcs1+0hmRq2nqZ2mzMu58qUwfxKJ3E07HONOrvfUv5zq1//eZz9hvBoZI5hdDO8/3llw/N3P0WvbvOVGm9TG3WyvPfY8yUjwUCAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqCCmlDYXxLgMISxXDxejn4h7++Ew3KXbmFNrTjv3PqV0nFNoVrsjU12RqQ4sXj4N7z5+k6k+yFQHZKorazP14HI1dPxqL729fJ5V++TZp/D964vs3iX12/Q+i+dZtVfpIrt27PqbdJ39RnCoZE4hjH/3Jb3HussJ5pr9ojUkU9PWy9RmY979VJk6iEfpJJ6OdaZRf+9byndu/es3n7PfCA6VzCmEdp7vL798aObut+jddaZK62Vqs1ae/x5jpnwsEAAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKCCmFLaXBDjMoSwXD38OYTw58zeP4UQfik4S0l9r71L639OKe3nFP6GOZWeqde7H3uuU8yq1/uRqXq1LfUe+ywy1cdZ5papls4yt0yV1vfau8VMldbPpff6WaWURvknhPBurPpee499lilm1dLP20rvqWbV6/20dPcy9XjPMvacWvt5WznL3DLV0lnmlqmW7qel3i3Oau69fSwQAACgAssVAABABWMuV38csb7X3qX1pb231cr99Np7m/pt9Ho/Ld29TO2uXqZ2V99S72218vOW1vfae1vufvre22rpZ3hUvR/8Cy0AAAB4mI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFTwQ0nx7+LTtBd+zKr9W/hr2A+H2b1L6nvtXVr/Lfw9/DP9GrObr5TMqfRMvd79BHP9JaX0++w/sCJT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912aqaLnaCz+Gk3iaVXuVLrJrS+t77V1af5Ous/sOlcyp9Ey93v0Ec/2f7OIBmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLtzGn1px27n1K6Tin0Kx2R6a6IlMdkKmuyFQHZKorazP14HI1dBCP0kk8zaq9ShfhLJ5n9y6p77V3af1Nus4O2FDJnErP1OvdTzDX7BetIZmatl6mujqLTHVwlrllqqWzzC1TpfW99m4xU6X1M+q9NlM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Nwl25jTq057dz7lNJxTqFZ7Y5MdUWmOiBTXZGpDshUV9Zm6sHlauggHqWTeJpVe5Uuwlk8z+5dUt9r79L6m3SdHbChkjmVnqnXu59grtkvWkMyNW29THV1Fpnq4Cxzy1RLZ5lbpkrre+3dYqZK62fUe22mfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIKYUtpcEOMyhLBcPVyMfiLu7YfD7G/pNqedW/st3euY1e7IVFdkqgMy1RWZ6oBMdWVtph5croYO4lE6iadZtVfpIpzF8+zeJfW99i6tv0nX2QEbKplT6Zl6vfsJ5pr9ojUkU9PWy1RXZ5GpDs4yt0y1dJa5Zaq0vtfeLWaqtH5GvddmyscCAQAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACr4oaT4Dy//ES4vP2TVPnkWwuWXvNrS+m16z0nJnEIY/+5Les+NTPVBpphCS/nOrX/95h/ZfR+Dyy8fmrl7z9sPa+nuZWq9x5ipmFLa+AdjjMsQwnL1cJH9b+Q32w+H4S7dxpxac9q59yml45xCs9odmeqKTHVg8fJpePfxm0z1QaY6IFNdWZupB5eroeNXe+nt5fOs2ifPPoXvX19k9y6p36b3WTzPqr1KF9m1Y9ffpOvsN4JDJXMKYfy7L+k91l1OMNfsF60hmZq2XqY2G/Pup8rUQTxKJ/F0rDON+nvfUr5z61+/+Zz9RnCoZE4htPN8/6//yt7G3W/Ru+tMldbL1GatPP89xkz5f64AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjgMd+k261u6zWnn1n5L9zpmtTsy1RWZ6sDi5dPw7uM3meqDTHVAprqyNlMPLldDx6/20tvL51m1T559Ct+/vsjuXVK/Te+zeJ5Ve5UusmvHrr9J19lvBIdK5hTC+Hdf0nusu5xgrtkvWkMyNW29TG025t1PlamDeJRO4ulYZxr1976lfOfWv37zOfuN4FDJnEJo5/n+8suHZu5+i95dZ6q0XqY2a+X57zFmyscCAQAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFQQU0qbC2JchhCWq4eL0U/Evf1wGO7SbcypNaede59SOs4pNKvdkamuyFQHFi+fhncfv8lUH2SqAzLVlbWZenC5Gjp+tZfeXj7Pqn3y7FP4/vVFdu+S+m16n8XzrNqrdJFdO3b9TbrOfiM4VDKnEMa/+5LeY93lBHPNftEakqlp62VqszHvfqpMHcSjdBJPxzrTqL/3LeU7t/71m8/ZbwSHSuYUQjvP95dfPjRz91v07jpTpfUytVkrz3+PMVM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQQUwpbS6IcRlCWK4eLkY/Eff2w2G4S7dZ39JtTju39lu61zGr3ZGprshUBxYvn4Z3H7/JVB9kqgMy1ZW1mXpwuRo6frWX3l4+z6p98uxT+P71RXbvkvptep/F86zaq3SRXTt2/U26zn4jOFQypxDGv/uS3mPd5QRzzX7RGpKpaetlarMx736qTB3Eo3QST8c606i/9y3lO7f+9ZvP2W8Eh0rmFEI7z/eXXz40c/db9O46U6X1MrVZK89/jzFTPhYIAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIKYUtpcEOMyhLBcPfw5hPDnzN4/hRB+KThLSX2vvUvrf04p7ecU/oY5lZ6p17sfe65TzKrX+5GperUt9R77LDLVx1nmlqmWzjK3TJXW99q7xUyV1s+l9/pZpZRG+SeE8G6s+l57j32WKWbV0s/bSu+pZtXr/bR09zL1eM8y9pxa+3lbOcvcMtXSWeaWqZbup6XeLc5q7r19LBAAAKACyxUAAEAFYy5XfxyxvtfepfWlvbfVyv302nub+m30ej8t3b1M7a5epnZX31LvbbXy85bW99p7W+5++t7baulneFS9H/wLLQAAAHiYjwUCAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKvihpPh38WnaCz9m1f4t/DXsh8Ps3iX1vfYurf8W/h7+mX6N2c1XSuZUeqZe736Cuf6SUvp99h9Ykalp62Wqq7PIVAdnmVumWjrL3DJVWt9r7xYzVVo/o95rM1W0XO2FH8NJPM2qvUoX2bWl9b32Lq2/SdfZfYdK5lR6pl7vfoK5/k928YBMTVsvU12dRaY6OMvcMtXSWeaWqdL6Xnu3mKnS+hn1XpspHwsEAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUEFMKW0uiHEZQliuHi5GPxH39sNhuEu3MafWnHbufUrpOKfQrHZHproiUx2Qqa7IVAdkqitrM/XgcjV0EI/SSTzNqr1KF+Esnmf3LqnvtXdp/U26zg7YUMmcSs/U691PMNfsF60hmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYfa3dJvTzq39lu51zGp3ZKorMtUBmeqKTHVAprqyNlMPLldDB/EoncTTrNqrdBHO4nl275L6XnuX1t+k6+yADZXMqfRMvd79BHPNftEakqlp62Wqq7PIVAdnmVumWjrL3DJVWt9r7xYzVVo/o95rM+VjgQAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqiCmlzQUxLkMIy9XDxegn4t5+OAx36Tbm1JrTzr1PKR3nFJrV7shUV2SqAzLVFZnqgEx1ZW2mHlyuhg7iUTqJp1m1V+kinMXz7N4l9b32Lq2/SdfZARsqmVPpmXq9+wnmmv2iNSRT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912bKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjjM/pZuc9q5td/SvY5Z7Y5MdUWmOrB4+TS8+/hNpvogUx2Qqa6szdSDy9XQ8au99PbyeVbtk2efwvevL7J7l9Rv0/ssnmfVXqWL7Nqx62/SdfYbwaGSOYUw/t2X9B7rLieYa/aL1pBMTVsvU5uNefdTZeogHqWTeDrWmUb9vW8p37n1r998zn4jOFQypxDaeb6//PKhmbvfonfXmSqtl6nNWnn+e4yZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABXElNLmghiXIYTl6uFi9BNxbz8chrt0G3NqzWnn3qeUjnMKzWp3ZKorMtWBxcun4d3HbzLVB5nqgEx1ZW2mHlyuho5f7aW3l8+zap88+xS+f32R3bukfpveZ/E8q/YqXWTXjl1/k66z3wgOlcwphPHvvqT3WHc5wVyzX7SGZGraepnabMy7nypTB/EoncTTsc406u99S/nOrX/95nP2G8GhkjmF0M7z/eWXD83c/Ra9u85Uab1MbdbK899jzJSPBQIAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACoIKaUNhfEuAwhLFcPF6OfiHv74TDcpduYU2tOO/c+pXScU2hWuyNTXZGpDixePg3vPn6TqT7IVAdkqitrM/XgcjV0/Govvb18nlX75Nmn8P3ri+zeJfXb9D6L51m1V+kiu3bs+pt0nf1GcKhkTiGMf/clvce6ywnmmv2iNSRT09bL1GZj3v1UmTqIR+kkno51plF/71vKd2796zefs98IDpXMKYR2nu8vv3xo5u636N11pkrrZWqzVp7/HmOmfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIKYUtpcEOMyhLBcPVyMfiLu7YfDcJdus76l25x2bu23dK9jVrsjU12RqQ4sXj4N7z5+k6k+yFQHZKorazP14HI1dPxqL729fJ5V++TZp/D964vs3iX12/Q+i+dZtVfpIrt27PqbdJ39RnCoZE4hjH/3Jb3HussJ5pr9ojUkU9PWy9RmY979VJk6iEfpJJ6OdaZRf+9byndu/es3n7PfCA6VzCmEdp7vL798aObut+jddaZK62Vqs1ae/x5jpnwsEAAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFMaW0uSDGZQhhuXr4cwjhz5m9fwoh/FJwlpL6XnuX1v+cUtrPKfwNcyo9U693P/Zcp5hVr/cjU/VqW+o99llkqo+zzC1TLZ1lbpkqre+1d4uZKq2fS+/1s0opjfJPCOHdWPW99h77LFPMqqWft5XeU82q1/tp6e5l6vGeZew5tfbztnKWuWWqpbPMLVMt3U9LvVuc1dx7+1ggAABABZYrAACACsZcrv44Yn2vvUvrS3tvq5X76bX3NvXb6PV+Wrp7mdpdvUztrr6l3ttq5ectre+197bc/fS9t9XSz/Coej/4F1oAAADwMB8LBAAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFTwQ0nx7+LTtBd+zKr9W/hr2A+H2b1L6nvtXVr/Lfw9/DP9GrObr5TMqfRMvd79BHP9JaX0++w/sCJT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912aqaLnaCz+Gk3iaVXuVLrJrS+t77V1af5Ous/sOlcyp9Ey93v0Ec/2f7OIBmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLtzGn1px27n1K6Tin0Kx2R6a6IlMdkKmuyFQHZKorazP14HI1dBCP0kk8zaq9ShfhLJ5n9y6p77V3af1Nus4O2FDJnErP1OvdTzDX7BetIZmatl6mujqLTHVwlrllqqWzzC1TpfW99m4xU6X1M+q9NlM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Nwl25jTq057dz7lNJxTqFZ7Y5MdUWmOiBTXZGpDshUV9Zm6sHlauggHqWTeJpVe5Uuwlk8z+5dUt9r79L6m3SdHbChkjmVnqnXu59grtkvWkMyNW29THV1Fpnq4Cxzy1RLZ5lbpkrre+3dYqZK62fUe22mfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5ergY/UTc2w+H4S7dxpxac9q59yml45xCs9odmeqKTHVAproiUx2Qqa6szdSDy9XQQTxKJ/E0q/YqXYSzeJ7du6S+196l9TfpOjtgQyVzKj1Tr3c/wVyzX7SGZGraepnq6iwy1cFZ5papls4yt0yV1vfau8VMldbPqPfaTPlYIAAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKCCH0qK//DyH+Hy8kNW7ZNnIVx+yastrd+m95yUzCmE8e++pPfcyFQfZIoptJTv3PrXb/6R3fcxuPzyoZm797z9sJbuXqbWe4yZiimljX8wxrgMISxXDxfZ/0Z+s/1wmP0t3ea0c2u/pXsds9odmeqKTHVg8fJpePfxm0z1QaY6IFNdWZupB5eroeNXe+nt5fOs2ifPPoXvX19k9y6p36b3WTzPqr1KF9m1Y9ffpOvsN4JDJXMKYfy7L+k91l1OMNfsF60hmZq2XqY2G/Pup8rUQTxKJ/F0rDON+nvfUr5z61+/+Zz9RnCoZE4htPN8/6//yt7G3W/Ru+tMldbL1GatPP89xkz5f64AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVBBTSpsLYlyGEJarh4vRT8S9/XAY7tJtzKk1p517n1I6zik0q92Rqa7IVAcWL5+Gdx+/yVQfZKoDMtWVtZl6cLkaOn61l95ePs+qffLsU/j+9UV275L6bXqfxfOs2qt0kV07dv1Nus5+IzhUMqcQxr/7kt5j3eUEc81+0RqSqWnrZWqzMe9+qkwdxKN0Ek/HOtOov/ct5Tu3/vWbz9lvBIdK5hRCO8/3l18+NHP3W/TuOlOl9TK1WSvPf48xUz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLt1nf0m1OO7f2W7rXMavdkamuyFQHFi+fhncfv8lUH2SqAzLVlbWZenC5Gjp+tZfeXj7Pqn3y7FP4/vVFdu+S+m16n8XzrNqrdJFdO3b9TbrOfiM4VDKnEMa/+5LeY93lBHPNftEakqlp62VqszHvfqpMHcSjdBJPxzrTqL/3LeU7t/71m8/ZbwSHSuYUQjvP95dfPjRz91v07jpTpfUytVkrz3+PMVM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Nwl25jTq057dz7lNJxTqFZ7Y5MdUWmOrB4+TS8+/hNpvogUx2Qqa6szdSDy9XQ8au99PbyeVbtk2efwvevL7J7l9Rv0/ssnmfVXqWL7Nqx62/SdfYbwaGSOYUw/t2X9B7rLieYa/aL1pBMTVsvU5uNefdTZeogHqWTeDrWmUb9vW8p37n1r998zn4jOFQypxDaeb6//PKhmbvfonfXmSqtl6nNWnn+e4yZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgApiSmlzQYzLEMJy9fDnEMKfM3v/FEL4peAsJfW99i6t/zmltJ9T+BvmVHqmXu9+7LlOMate70em6tW21Hvss8hUH2eZW6ZaOsvcMlVa32vvFjNVWj+X3utnlVIa5Z8Qwrux6nvtPfZZpphVSz9vK72nmlWv99PS3cvU4z3L2HNq7edt5Sxzy1RLZ5lbplq6n5Z6tziruff2sUAAAIAKLFcAAAAVjLlc/XHE+l57l9aX9t5WK/fTa+9t6rfR6/20dPcytbt6mdpdfUu9t9XKz1ta32vvbbn76Xtvq6Wf4VH1fvAvtAAAAOBhPhYIAABQgeUKAACgAssVAABABZYrAACACixXAAAAFfx/jO2AMuneKvUAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 864x864 with 64 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure(figsize=(12, 12))\n",
    "for i in range(H * W):\n",
    "    ax = fig.add_subplot(H, W, i + 1)\n",
    "    ax.imshow(mask[i].reshape(H, W))\n",
    "    ax.grid(color='k', linestyle='-', linewidth=1)\n",
    "    ax.set_xticks(torch.arange(0.5, W))\n",
    "    ax.set_yticks(torch.arange(0.5, H))\n",
    "    ax.set_xticklabels([])\n",
    "    ax.set_yticklabels([])\n",
    "fig.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "747678ef-18d0-4e13-969b-da389f7e3479",
   "metadata": {},
   "source": [
    "And for the shifted case"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "01274104-c52a-4740-85bf-67363300322b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANYCAYAAAAolBclAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABB6klEQVR4nO3dwWpcWbYu6jmv8pTNTSSQqGroguE0zM6efUHCegAJ/AJ6hnioega9gEF6ABkbtnevDmqcjeG4k9cFLqpw1sHM07ixxWqsCs2pHCtiTa3vAzcChkdOzaE/FgMiHbmUkgAAAPh9/q9dHwAAAOApsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAE+Kml+I9He+W/v/hvVbUf/+O3dPLqWXXvj//xW9pPh1W1f0t/ra5trZ+yd2v99/T39M/yW65uvtYyp5TaZtUyp5Tmc/dbmOuvpZQ/Vf+FtT/kZ+V5+nmqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv2Pz//7/Tr1x+zylRr/dx6T5jX0Uzlln+K/fT18/L+3Yuq2r3ju/Tjy8vq3nvHd+kiX1bVXper6trW+il7t9bflpv0rXxtDljLnFJqm1XLnFKaz91vYa4fSymn1X9h7SAflbN8PtWZmubamtcpe88tUy1zaj1Ty5xSmv7uZ/S+LVNB9TK1Wa/vf08lUz0+96f8HXvz9nP68On7rDLVWj+33hPmdTRTPhYIAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQIJdSNhfkvEoprdYvTyY/Eff202H6Vr7mmlpz2rmPpZTTmkKz2h2Z6opMdUCmuiJTHTh59Sx9+PRdpvowmqkHl6uh09fPy/t3L6pq947v0o8vL6t77x3fpYt8WVV7Xa6qa1vrp+zdWn9bbqofWkMtc0qpbVYtc0ppPne/hblWP7SGDvJROcvnU52paa6teZ2y99wy1TKn1jO1zCml6e9+Ru/bMhVUL1Ob9fr+91Qy1eNzf8rfsTdvP1cvV0NTZqq1fm69J8zraKZ8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV+eTH4i7u2nw+pvvjennRv9lu4xZrU7MtUVmeqATHVFpjogU10ZzdSDy9XQQT4qZ/m8qva6XKWLfFndu6W+196t9bflpjpgQy1zaj1Tr3e/hblWP7SGZGq79TLV1VlkqoOzLC1TczrL0jLVWt9r7zlmqrV+Qb1HM+VjgQAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAFyKWVzQc6rlNJq/fJk8hNxbz8dpm/la66pNaed+1hKOa0pNKvdkamuyFQHZKorMtUBmerKaKYeXK6GDvJROcvnVbXX5Spd5Mvq3i31vfZurb8tN9UBG2qZU+uZer37Lcy1+qE1JFPbrZeprs4iUx2cZWmZmtNZlpap1vpee88xU631C+o9mikfCwQAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAiQSymbC3JepZRW65cnk5+Ie/vpMH0rX3NNrTnt3MdSymlNoVntjkx1RaY6IFNdkakOyFRXRjP14HI1dJCPylk+r6q9LlfpIl9W926p77V3a/1tuakO2FDLnFrP1Ovdb2Gu1Q+tIZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uz5WCAAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh9Xf0m1OOzf6Ld1jzGp3ZKorMtUBmeqKTHVAproymqkHl6uhg3xUzvJ5Ve11uUoX+bK6d0t9r71b62/LTXXAhlrm1HqmXu9+C3OtfmgNydR262Wqq7PIVAdnWVqm5nSWpWWqtb7X3nPMVGv9gnqPZsrHAgEAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAALkUsrmgpxXKaXV+uXJ5Cfi3n46TN/K11xTa04797GUclpTaFa7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfW3dJvTzo1+S/cYs9odmeqKTHVAproiUx2Qqa6MZurB5WroIB+Vs3xeVXtdrtJFvqzu3VLfa+/W+ttyUx2woZY5tZ6p17vfwlyrH1pDMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmfKxQAAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgAC5lLK5IOdVSmm1fvlLSukvlb3/mFL6teEsLfW99m6t/6WUsl9T+Dvm1HqmXu9+6rluY1a93o9MxdXOqffUZ5GpPs6ytEzN6SxLy1Rrfa+955ip1vql9B6fVSllkj8ppQ9T1ffae+qzbGNWc/p559J7W7Pq9X7mdPcy9XTPMvWc5vbzzuUsS8vUnM6ytEzN6X7m1HuOs1p6bx8LBAAACGC5AgAACDDlcvXnCet77d1a39r7seZyP732fkz9Y/R6P3O6e5naXb1M7a5+Tr0fay4/b2t9r70fy91vv/djzelneFK9H/wHLQAAAHiYjwUCAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAE+Kml+I9He+W/v/hvVbUf/+O3dPLqWXXvj//xW9pPh1W1f0t/ra5trZ+yd2v99/T39M/yW65uvtYyp5TaZtUyp5Tmc/dbmOuvpZQ/Vf+FtT/kZ+V5+nmqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv2Pz//7/Tr1x+zylRr/dx6T5jX0UzlUkp1k9PXz8v7dy+qaveO79KPLy+re+8d36WLfFlVe12uqmtb66fs3Vp/W27St/K1OWAtc0qpbVYtc0ppPne/hbl+LKWcVv+FtYN8VM7y+VRnappra16n7D23TLXMqfVMLXNKafq7n9H7tkwF1cvUZr2+/z2VTPX43J/yd+zN28/pw6fvs8pUa/3cek+Y19FM+VggAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAgFxK2VyQ8yqltFq/PJn8RNzbT4fpW/maa2rNaec+llJOawrNandkqisy1QGZ6opMdeDk1bP04dN3merDaKYeXK6GTl8/L+/fvaiq3Tu+Sz++vKzuvXd8ly7yZVXtdbmqrm2tn7J3a/1tual+aA21zCmltlm1zCml+dz9FuZa/dAaOshH5SyfT3Wmprm25nXK3nPLVMucWs/UMqeUpr/7Gb1vy1RQvUxt1uv731PJVI/P/Sl/x968/Vy9XA1NmanW+rn1njCvo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAP7UU/4//+L/T2//n/62svmuo/f/ridE2p5TaZmVOPZkyr94L4szp7s1qszndvfftf21Ody9TT9NUvzP/o/x/jzkOG2w7r7mUsvGv5ZxXKaXV+uVJw3+R32k/HVZ/87057dzot3SPMavdkamuyFQHZKorMtUBmerKaKYeXK6GDvJROcvnVbXX5Spd5Mvq3i31vfZurb8tN9UBG2qZU+uZer37Lcy1+qE1JFPbrZeprs4iUx2cZWmZmtNZlpap1vpee88xU631C+o9min/zxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh+lb+Zpras1p5z6WUk5rCs1qd2SqKzLVAZnqikx1QKa6MpqpB5eroYN8VM7yeVXtdblKF/myundLfa+9W+tvy011wIZa5tR6pl7vfgtzrX5oDcnUdutlqquzyFQHZ1lapuZ0lqVlqrW+195zzFRr/YJ6j2bKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+Oqz+lm5z2rnRb+keY1a7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfpWvuaaWnPauY+llNOaQrPaHZnqikx1QKa6IlMdkKmujGbqweVq6CAflbN8XlV7Xa7SRb6s7t1S32vv1vrbclMdsKGWObWeqde738Jcqx9aQzK13XqZ6uosMtXBWZaWqTmdZWmZaq3vtfccM9Vav6Deo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDqu/pducdm70W7rHmNXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10mL6Vr7mm1px27mMp5bSm0Kx2R6a6IlMdkKmuyFQHZKoro5l6cLkaOshH5SyfV9Vel6t0kS+re7fU99q7tf623FQHbKhlTq1n6vXutzDX6ofWkExtt16mujqLTHVwlqVlak5nWVqmWut77T3HTLXWL6j3aKZ8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV/+klL6S2XvP6aUfm04S0t9r71b638ppezXFP6OObWeqde7n3qu25hVr/cjU3G1c+o99Vlkqo+zLC1TczrL0jLVWt9r7zlmqrV+Kb3HZ1VKmeRPSunDVPW99p76LNuY1Zx+3rn03taser2fOd29TD3ds0w9p7n9vHM5y9IyNaezLC1Tc7qfOfWe46yW3tvHAgEAAAJYrgAAAAJMuVz9ecL6Xnu31rf2fqy53E+vvR9T/xi93s+c7l6mdlcvU7urn1Pvx5rLz9ta32vvx3L32+/9WHP6GZ5U7wf/QQsAAAAe5mOBAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAAX5qKf5Dflaep5+rav+W/pr202F175b6Xnu31n9Pf0//LL/l6uZrLXNqPVOvd7+Fuf5aSvlT9V9Yk6nt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezVTTcvU8/ZzO8nlV7XW5qq5tre+1d2v9bbmp7jvUMqfWM/V691uY639WFw/I1HbrZaqrs8hUB2dZWqbmdJalZaq1vtfec8xUa/2Ceo9myscCAQAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAuRSyuaCnFcppdX65cnkJ+LefjpM38rXXFNrTjv3sZRyWlNoVrsjU12RqQ7IVFdkqgMy1ZXRTD24XA0d5KNyls+raq/LVbrIl9W9W+p77d1af1tuqgM21DKn1jP1evdbmGv1Q2tIprZbL1NdnUWmOjjL0jI1p7MsLVOt9b32nmOmWusX1Hs0Uz4WCAAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEOCnluJ/e/WP9O7dv1fV7h2n9O5/1dX+Vz0xWuaUUtuszKkvLXNtzeuUvZdmTndvVpvN6e69b/9rc7p7mXqapvqdefP2H487EP/StvOaSykb/2LOeZVSWq1fnlT/F/nd9tNh+la+5ppac9q5j6WU05pCs9odmeqKTHVAproiUx04efUsffj0Xab6MJqpB5erodPXz8v7dy+qaveO79KPLy+re+8d36WLfFlVe12uqmtb66fs3Vp/W26qH1pDLXNKqW1WLXNKaT53v4W5Vj+0hg7yUTnL51OdqWmurXmdsvfcMtUyp9Yztcwppenvfkbv2zIVVC9Tm/X6/vdUMtXjc3/K37E3bz9XL1dDU2aqtX5uvSfM62im/D9XAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAAXIpZXNBzquU0mr98mTyE3FvPx1Wf/O9Oe3c6Ld0jzGr3ZGprshUB2SqKzLVgZNXz9KHT99lqg+jmXpwuRo6ff28vH/3oqp27/gu/fjysrr33vFdusiXVbXX5aq6trV+yt6t9bflpvqhNdQyp5TaZtUyp5Tmc/dbmGv1Q2voIB+Vs3w+1Zma5tqa1yl7zy1TLXNqPVPLnFKa/u5n9L4tU0H1MrVZr+9/TyVTPT73p/wde/P2c/VyNTRlplrr59Z7wryOZsrHAgEAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAALkUsrmgpxXKaXV+uXJ5Cfi3n46TN/K11xTa04797GUclpTaFa7I1NdkakOyFRXZKoDJ6+epQ+fvstUH0Yz9eByNXT6+nl5/+5FVe3e8V368eVlde+947t0kS+raq/LVXVta/2UvVvrb8tN9UNrqGVOKbXNqmVOKc3n7rcw1+qH1tBBPipn+XyqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv25u3n6uVqaMpMtdbPrfeEeR3NlI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABMillM0FOa9SSqv1y5PJT8S9/XRY/c335rRzo9/SPcasdkemuiJTHZCprshUB05ePUsfPn2XqT6MZurB5Wro9PXz8v7di6raveO79OPLy+ree8d36SJfVtVel6vq2tb6KXu31t+Wm+qH1lDLnFJqm1XLnFKaz91vYa7VD62hg3xUzvL5VGdqmmtrXqfsPbdMtcyp9Uwtc0pp+ruf0fu2TAXVy9Rmvb7/PZVM9fjcn/J37M3bz9XL1dCUmWqtn1vvCfM6mikfCwQAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAiQSymbC3JepZRW65cnk5+Ie/vpMH0rX3NNrTnt3MdSymlNoVntjkx1RaY6IFNdkakOyFRXRjP14HI1dJCPylk+r6q9LlfpIl9W926p77V3a/1tuakO2FDLnFrP1Ovdb2Gu1Q+tIZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uz5WCAAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh+lb+Zpras1p5z6WUk5rCs1qd2SqKzLVAZnqikx1QKa6MpqpB5eroYN8VM7yeVXtdblKF/myundLfa+9W+tvy011wIZa5tR6pl7vfgtzrX5oDcnUdutlqquzyFQHZ1lapuZ0lqVlqrW+195zzFRr/YJ6j2bKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlLymlv1T2/mNK6deGs7TU99q7tf6XUsp+TeHvmFPrmXq9+6nnuo1Z9Xo/MhVXO6feU59Fpvo4y9IyNaezLC1TrfW99p5jplrrl9J7fFallEn+pJQ+TFXfa++pz7KNWc3p551L723Nqtf7mdPdy9TTPcvUc5rbzzuXsywtU3M6y9IyNaf7mVPvOc5q6b19LBAAACCA5QoAACDAlMvVnyes77V3a31r78eay/302vsx9Y/R6/3M6e5lanf1MrW7+jn1fqy5/Lyt9b32fix3v/3ejzWnn+FJ9X7wH7QAAADgYT4WCAAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEOCnluI/5Gflefq5qvZv6a9pPx1W926p77V3a/339Pf0z/Jbrm6+1jKn1jP1evdbmOuvpZQ/Vf+FNZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uw1LVfP08/pLJ9X1V6Xq+ra1vpee7fW35ab6r5DLXNqPVOvd7+Fuf5ndfGATG23Xqa6OotMdXCWpWVqTmdZWqZa63vtPcdMtdYvqPdopnwsEAAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIEAupWwuyHmVUlqtX55MfiLu7afD9K18zTW15rRzH0sppzWFZrU7MtUVmeqATHVFpjogU10ZzdSDy9XQQT4qZ/m8qva6XKWLfFndu6W+196t9bflpjpgQy1zaj1Tr3e/hblWP7SGZGq79TLV1VlkqoOzLC1TczrL0jLVWt9r7zlmqrV+Qb1HM+VjgQAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAFyKWVzQc6rlNJq/fJk8hNxbz8dVn9Ltznt3Oi3dI8xq92Rqa7IVAdkqisy1YGTV8/Sh0/fZaoPo5l6cLkaOn39vLx/96Kqdu/4Lv348rK6997xXbrIl1W11+Wqura1fsrerfW35ab6oTXUMqeU2mbVMqeU5nP3W5hr9UNr6CAflbN8PtWZmubamtcpe88tUy1zaj1Ty5xSmv7uZ/S+LVNB9TK1Wa/vf08lUz0+96f8HXvz9nP1cjU0ZaZa6+fWe8K8jmbKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+OkzfytdcU2tOO/exlHJaU2hWuyNTXZGpDshUV2SqAyevnqUPn77LVB9GM/XgcjV0+vp5ef/uRVXt3vFd+vHlZXXvveO7dJEvq2qvy1V1bWv9lL1b62/LTfVDa6hlTim1zaplTinN5+63MNfqh9bQQT4qZ/l8qjM1zbU1r1P2nlumWubUeqaWOaU0/d3P6H1bpoLqZWqzXt//nkqmenzuT/k79ubt5+rlamjKTLXWz633hHkdzZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10mL6Vr7mm1px27mMp5bSm0Kx2R6a6IlMdkKmuyFQHTl49Sx8+fZepPoxm6sHlauj09fPy/t2Lqtq947v048vL6t57x3fpIl9W1V6Xq+ra1vope7fW35ab6ofWUMucUmqbVcucUprP3W9hrtUPraGDfFTO8vlUZ2qaa2tep+w9t0y1zKn1TC1zSmn6u5/R+7ZMBdXL1Ga9vv89lUz1+Nyf8nfszdvP1cvV0JSZaq2fW+8J8zqaKR8LBAAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACJBLKZsLcl6llFbrlyeTn4h7++mw+pvvzWnnRr+le4xZ7Y5MdUWmOiBTXZGpDpy8epY+fPouU30YzdSDy9XQ6evn5f27F1W1e8d36ceXl9W9947v0kW+rKq9LlfVta31U/Zurb8tN9UPraGWOaXUNquWOaU0n7vfwlyrH1pDB/monOXzqc7UNNfWvE7Ze26ZaplT65la5pTS9Hc/o/dtmQqql6nNen3/eyqZ6vG5P+Xv2Ju3n6uXq6EpM9VaP7feE+Z1NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfpWvuaaWnPauY+llNOaQrPaHZnqikx1QKa6IlMdkKmujGbqweVq6CAflbN8XlV7Xa7SRb6s7t1S32vv1vrbclMdsKGWObWeqde738Jcqx9aQzK13XqZ6uosMtXBWZaWqTmdZWmZaq3vtfccM9Vav6Deo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDqu/pducdm70W7rHmNXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9ctfUkp/qez9x5TSrw1naanvtXdr/S+llP2awt8xp9Yz9Xr3U891G7Pq9X5kKq52Tr2nPotM9XGWpWVqTmdZWqZa63vtPcdMtdYvpff4rEopk/xJKX2Yqr7X3lOfZRuzmtPPO5fe25pVr/czp7uXqad7lqnnNLefdy5nWVqm5nSWpWVqTvczp95znNXSe/tYIAAAQADLFQAAQIApl6s/T1jfa+/W+tbejzWX++m192PqH6PX+5nT3cvU7uplanf1c+r9WHP5eVvre+39WO5++70fa04/w5Pq/eA/aAEAAMDDfCwQAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAgwE8txX/Iz8rz9HNV7d/SX9N+Oqzu3VLfa+/W+u/p7+mf5bdc3XytZU6tZ+r17rcw119LKX+q/gtrMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmWparp6nn9NZPq+qvS5X1bWt9b32bq2/LTfVfYda5tR6pl7vfgtz/c/q4gGZ2m69THV1Fpnq4CxLy9SczrK0TLXW99p7jplqrV9Q79FM+VggAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAgFxK2VyQ8yqltFq/PJn8RNzbT4fpW/maa2rNaec+llJOawrNandkqisy1QGZ6opMdUCmujKaqQeXq6GDfFTO8nlV7XW5Shf5srp3S32vvVvrb8tNdcCGWubUeqZe734Lc61+aA3J1HbrZaqrs8hUB2dZWqbmdJalZaq1vtfec8xUa/2Ceo9myscCAQAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAvzUUvxvr/6R3r3796raveOU3v2vutr/qidGy5xSapuVOfWlZa6teZ2y99LM6e7NarM53b337X9tTncvU0/TVL8zb97+43EH4l/adl5zKWXjX8w5r1JKq/XLk+r/Ir/bfjqs/pZuc9q50W/pHmNWuyNTXZGpDshUV2SqAyevnqUPn77LVB9GM/XgcjV0+vp5ef/uRVXt3vFd+vHlZXXvveO7dJEvq2qvy1V1bWv9lL1b62/LTfVDa6hlTim1zaplTinN5+63MNfqh9bQQT4qZ/l8qjM1zbU1r1P2nlumWubUeqaWOaU0/d3P6H1bpoLqZWqzXt//nkqmenzuT/k79ubt5+rlamjKTLXWz633hHkdzZT/5woAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV+eTH4i7u2nw/StfM01tea0cx9LKac1hWa1OzLVFZnqgEx1RaY6cPLqWfrw6btM9WE0Uw8uV0Onr5+X9+9eVNXuHd+lH19eVvfeO75LF/myqva6XFXXttZP2bu1/rbcVD+0hlrmlFLbrFrmlNJ87n4Lc61+aA0d5KNyls+nOlPTXFvzOmXvuWWqZU6tZ2qZU0rT3/2M3rdlKqhepjbr9f3vqWSqx+f+lL9jb95+rl6uhqbMVGv93HpPmNfRTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRavzyZ/ETc20+H1d98b047N/ot3WPMandkqisy1QGZ6opMdeDk1bP04dN3merDaKYeXK6GTl8/L+/fvaiq3Tu+Sz++vKzuvXd8ly7yZVXtdbmqrm2tn7J3a/1tual+aA21zCmltlm1zCml+dz9FuZa/dAaOshH5SyfT3Wmprm25nXK3nPLVMucWs/UMqeUpr/7Gb1vy1RQvUxt1uv731PJVI/P/Sl/x968/Vy9XA1NmanW+rn1njCvo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDtO38jXX1JrTzn0spZzWFJrV7shUV2SqAzLVFZnqwMmrZ+nDp+8y1YfRTD24XA2dvn5e3r97UVW7d3yXfnx5Wd177/guXeTLqtrrclVd21o/Ze/W+ttyU/3QGmqZU0pts2qZU0rzufstzLX6oTV0kI/KWT6f6kxNc23N65S955apljm1nqllTilNf/czet+WqaB6mdqs1/e/p5KpHp/7U/6OvXn7uXq5GpoyU631c+s9YV5HM+VjgQAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAFyKWVzQc6rlNJq/fJk8hNxbz8dVn/zvTnt3Oi3dI8xq92Rqa7IVAdkqisy1QGZ6spoph5croYO8lE5y+dVtdflKl3ky+reLfW99m6tvy031QEbaplT65l6vfstzLX6oTUkU9utl6muziJTHZxlaZma01mWlqnW+l57zzFTrfUL6j2aKR8LBAAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACJBLKZsLcl6llFbrlyeTn4h7++kwfStfc02tOe3cx1LKaU2hWe2OTHVFpjogU12RqQ7IVFdGM/XgcjV0kI/KWT6vqr0uV+kiX1b3bqnvtXdr/W25qQ7YUMucWs/U691vYa7VD60hmdpuvUx1dRaZ6uAsS8vUnM6ytEy11vfae46Zaq1fUO/RTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRav/wlpfSXyt5/TCn92nCWlvpee7fW/1JK2a8p/B1zaj1Tr3c/9Vy3Mate70em4mrn1Hvqs8hUH2dZWqbmdJalZaq1vtfec8xUa/1Seo/PqpQyyZ+U0oep6nvtPfVZtjGrOf28c+m9rVn1ej9zunuZerpnmXpOc/t553KWpWVqTmdZWqbmdD9z6j3HWS29t48FAgAABLBcAQAABJhyufrzhPW99m6tb+39WHO5n157P6b+MXq9nzndvUztrl6mdlc/p96PNZeft7W+196P5e633/ux5vQzPKneD/6DFgAAADzMxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC/NRS/If8rDxPP1fV/i39Ne2nw+reLfW99m6t/57+nv5ZfsvVzdda5tR6pl7vfgtz/bWU8qfqv7AmU9utl6muziJTHZxlaZma01mWlqnW+l57zzFTrfUL6j2aqabl6nn6OZ3l86ra63JVXdta32vv1vrbclPdd6hlTq1n6vXutzDX/6wuHpCp7dbLVFdnkakOzrK0TM3pLEvLVGt9r73nmKnW+gX1Hs2UjwUCAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEyKWUzQU5r1JKq/XLk8lPxL39dJi+la+5ptacdu5jKeW0ptCsdkemuiJTHZCprshUB2SqK6OZenC5GjrIR+Usn1fVXperdJEvq3u31Pfau7X+ttxUB2yoZU6tZ+r17rcw1+qH1pBMbbdepro6i0x1cJalZWpOZ1laplrre+09x0y11i+o92imfCwQAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAgwE8txf/26h/p3bt/r6rdO07p3f+qq/2vemK0zCmltlmZU19a5tqa1yl7L82c7t6sNpvT3Xvf/tfmdPcy9TRN9Tvz5u0/Hncg/qVt5zWXUjb+xZzzKqW0Wr88qf4v8rvtp8P0rXzNNbXmtHMfSymnNYVmtTsy1RWZ6oBMdUWmOnDy6ln68Om7TPVhNFMPLldDp6+fl/fvXlTV7h3fpR9fXlb33ju+Sxf5sqr2ulxV17bWT9m7tf623FQ/tIZa5pRS26xa5pTSfO5+C3OtfmgNHeSjcpbPpzpT01xb8zpl77llqmVOrWdqmVNK09/9jN63ZSqoXqY26/X976lkqsfn/pS/Y2/efq5eroamzFRr/dx6T5jX0Uz5f64AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+Oqz+5ntz2rnRb+keY1a7I1NdkakOyFRXZKoDJ6+epQ+fvstUH0Yz9eByNXT6+nl5/+5FVe3e8V368eVlde+947t0kS+raq/LVXVta/2UvVvrb8tN9UNrqGVOKbXNqmVOKc3n7rcw1+qH1tBBPipn+XyqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv25u3n6uVqaMpMtdbPrfeEeR3NlI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABMillM0FOa9SSqv1y5PJT8S9/XSYvpWvuabWnHbuYynltKbQrHZHproiUx2Qqa7IVAdOXj1LHz59l6k+jGbqweVq6PT18/L+3Yuq2r3ju/Tjy8vq3nvHd+kiX1bVXper6trW+il7t9bflpvqh9ZQy5xSaptVy5xSms/db2Gu1Q+toYN8VM7y+VRnappra16n7D23TLXMqfVMLXNKafq7n9H7tkwF1cvUZr2+/z2VTPX43J/yd+zN28/Vy9XQlJlqrZ9b7wnzOpopHwsEAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIkEspmwtyXqWUVuuXJ5OfiHv76bD6m+/NaedGv6V7jFntjkx1RaY6IFNdkakOnLx6lj58+i5TfRjN1IPL1dDp6+fl/bsXVbV7x3fpx5eX1b33ju/SRb6sqr0uV9W1rfVT9m6tvy031Q+toZY5pdQ2q5Y5pTSfu9/CXKsfWkMH+aic5fOpztQ019a8Ttl7bplqmVPrmVrmlNL0dz+j922ZCqqXqc16ff97Kpnq8bk/5e/Ym7efq5eroSkz1Vo/t94T5nU0Uz4WCAAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAECCXUjYX5LxKKa3WL08mPxH39tNh+la+5ppac9q5j6WU05pCs9odmeqKTHVAproiUx2Qqa6MZurB5WroIB+Vs3xeVXtdrtJFvqzu3VLfa+/W+ttyUx2woZY5tZ6p17vfwlyrH1pDMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmfKxQAAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgAC5lLK5IOdVSmm1fnky+Ym4t58Oq7+l25x2bvRbuseY1e7IVFdkqgMy1RWZ6oBMdWU0Uw8uV0MH+aic5fOq2utylS7yZXXvlvpee7fW35ab6oANtcyp9Uy93v0W5lr90BqSqe3Wy1RXZ5GpDs6ytEzN6SxLy1Rrfa+955ip1voF9R7NlI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABMillM0FOa9SSqv1y19SSn+p7P3HlNKvDWdpqe+1d2v9L6WU/ZrC3zGn1jP1evdTz3Ubs+r1fmQqrnZOvac+i0z1cZalZWpOZ1laplrre+09x0y11i+l9/isSimT/EkpfZiqvtfeU59lG7Oa0887l97bmlWv9zOnu5epp3uWqec0t593LmdZWqbmdJalZWpO9zOn3nOc1dJ7+1ggAABAAMsVAABAgCmXqz9PWN9r79b61t6PNZf76bX3Y+ofo9f7mdPdy9Tu6mVqd/Vz6v1Yc/l5W+t77f1Y7n77vR9rTj/Dk+r94D9oAQAAwMN8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACDATy3Ff8jPyvP0c1Xt39Jf0346rO7dUt9r79b67+nv6Z/lt1zdfK1lTq1n6vXutzDXX0spf6r+C2sytd16merqLDLVwVmWlqk5nWVpmWqt77X3HDPVWr+g3qOZalqunqef01k+r6q9LlfVta31vfZurb8tN9V9h1rm1HqmXu9+C3P9z+riAZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uz5WCAAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh+lb+Zpras1p5z6WUk5rCs1qd2SqKzLVAZnqikx1QKa6MpqpB5eroYN8VM7yeVXtdblKF/myundLfa+9W+tvy011wIZa5tR6pl7vfgtzrX5oDcnUdutlqquzyFQHZ1lapuZ0lqVlqrW+195zzFRr/YJ6j2bKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+Oqz+lm5z2rnRb+keY1a7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfpWvuaaWnPauY+llNOaQrPaHZnqikx1QKa6IlMdkKmujGbqweVq6CAflbN8XlV7Xa7SRb6s7t1S32vv1vrbclMdsKGWObWeqde738Jcqx9aQzK13XqZ6uosMtXBWZaWqTmdZWmZaq3vtfccM9Vav6Deo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDqu/pducdm70W7rHmNXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10mL6Vr7mm1px27mMp5bSm0Kx2R6a6IlMdkKmuyFQHZKoro5l6cLkaOshH5SyfV9Vel6t0kS+re7fU99q7tf623FQHbKhlTq1n6vXutzDX6ofWkExtt16mujqLTHVwlqVlak5nWVqmWut77T3HTLXWL6j3aKZ8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV+eTH4i7u2nw/StfM01tea0cx9LKac1hWa1OzLVFZnqgEx1RaY6cPLqWfrw6btM9WE0Uw8uV0Onr5+X9+9eVNXuHd+lH19eVvfeO75LF/myqva6XFXXttZP2bu1/rbcVD+0hlrmlFLbrFrmlNJ87n4Lc61+aA0d5KNyls+nOlPTXFvzOmXvuWWqZU6tZ2qZU0rT3/2M3rdlKqhepjbr9f3vqWSqx+f+lL9jb95+rl6uhqbMVGv93HpPmNfRTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRavzyZ/ETc20+H1d98b047N/ot3WPMandkqisy1QGZ6opMdeDk1bP04dN3merDaKYeXK6GTl8/L+/fvaiq3Tu+Sz++vKzuvXd8ly7yZVXtdbmqrm2tn7J3a/1tual+aA21zCmltlm1zCml+dz9FuZa/dAaOshH5SyfT3Wmprm25nXK3nPLVMucWs/UMqeUpr/7Gb1vy1RQvUxt1uv731PJVI/P/Sl/x968/Vy9XA1NmanW+rn1njCvo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX75S0rpL5W9/5hS+rXhLC31vfZurf+llLJfU/g75tR6pl7vfuq5bmNWvd6PTMXVzqn31GeRqT7OsrRMzeksS8tUa32vveeYqdb6pfQen1UpZZI/KaUPU9X32nvqs2xjVnP6eefSe1uz6vV+5nT3MvV0zzL1nOb2887lLEvL1JzOsrRMzel+5tR7jrNaem8fCwQAAAhguQIAAAgw5XL15wnre+3dWt/a+7Hmcj+99n5M/WP0ej9zunuZ2l29TO2ufk69H2suP29rfa+9H8vdb7/3Y83pZ3hSvR/8By0AAAB4mI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABPippfgP+Vl5nn6uqv1b+mvaT4fVvVvqe+3dWv89/T39s/yWq5uvtcyp9Uy93v0W5vprKeVP1X9hTaa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFNNy9Xz9HM6y+dVtdflqrq2tb7X3q31t+Wmuu9Qy5xaz9Tr3W9hrv9ZXTwgU9utl6muziJTHZxlaZma01mWlqnW+l57zzFTrfUL6j2aKR8LBAAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACJBLKZsLcl6llFbrlyeTn4h7++kwfStfc02tOe3cx1LKaU2hWe2OTHVFpjogU12RqQ7IVFdGM/XgcjV0kI/KWT6vqr0uV+kiX1b3bqnvtXdr/W25qQ7YUMucWs/U691vYa7VD60hmdpuvUx1dRaZ6uAsS8vUnM6ytEy11vfae46Zaq1fUO/RTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRavzyZ/ETc20+H6Vv5mmtqzWnnPpZSTmsKzWp3ZKorMtUBmeqKTHVAproymqkHl6uhg3xUzvJ5Ve11uUoX+bK6d0t9r71b62/LTXXAhlrm1HqmXu9+C3OtfmgNydR262Wqq7PIVAdnWVqm5nSWpWWqtb7X3nPMVGv9gnqPZsrHAgEAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAALkUsrmgpxXKaXV+uXJ5Cfi3n46TN/K11xTa04797GUclpTaFa7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfW3dJvTzo1+S/cYs9odmeqKTHVAproiUx2Qqa6MZurB5WroIB+Vs3xeVXtdrtJFvqzu3VLfa+/W+ttyUx2woZY5tZ6p17vfwlyrH1pDMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmfKxQAAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgAC5lLK5IOdVSmm1fnky+Ym4t58O07fyNdfUmtPOfSylnNYUmtXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10WP0t3ea0c6Pf0j3GrHZHproiUx2Qqa7IVAdOXj1LHz59l6k+jGbqweVq6PT18/L+3Yuq2r3ju/Tjy8vq3nvHd+kiX1bVXper6trW+il7t9bflpvqh9ZQy5xSaptVy5xSms/db2Gu1Q+toYN8VM7y+VRnappra16n7D23TLXMqfVMLXNKafq7n9H7tkwF1cvUZr2+/z2VTPX43J/yd+zN28/Vy9XQlJlqrZ9b7wnzOpopHwsEAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIkEspmwtyXqWUVuuXJ5OfiHv76TB9K19zTa057dzHUsppTaFZ7Y5MdUWmOiBTXZGpDpy8epY+fPouU30YzdSDy9XQ6evn5f27F1W1e8d36ceXl9W9947v0kW+rKq9LlfVta31U/Zurb8tN9UPraGWOaXUNquWOaU0n7vfwlyrH1pDB/monOXzqc7UNNfWvE7Ze26ZaplT65la5pTS9Hc/o/dtmQqql6nNen3/eyqZ6vG5P+Xv2Ju3n6uXq6EpM9VaP7feE+Z1NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9/SSn9pbL3H1NKvzacpaW+196t9b+UUvZrCn/HnFrP1OvdTz3Xbcyq1/uRqbjaOfWe+iwy1cdZlpapOZ1laZlqre+19xwz1Vq/lN7jsyqlTPInpfRhqvpee099lm3Mak4/71x6b2tWvd7PnO5epp7uWaae09x+3rmcZWmZmtNZlpapOd3PnHrPcVZL7+1jgQAAAAEsVwAAAAGmXK7+PGF9r71b61t7P9Zc7qfX3o+pf4xe72dOdy9Tu6uXqd3Vz6n3Y83l522t77X3Y7n77fd+rDn9DE+q94P/oAUAAAAP87FAAACAAJYrAACAAJYrAACAAJYrAACAAJYrAACAAP8Hs7VwOxhjYI0AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 864x864 with 64 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure(figsize=(12, 12))\n",
    "for i in range(H * W):\n",
    "    ax = fig.add_subplot(H, W, i + 1)\n",
    "    ax.imshow(mask_shifted[i].reshape(H, W))\n",
    "    ax.grid(color='k', linestyle='-', linewidth=1)\n",
    "    ax.set_xticks(torch.arange(0.5, W))\n",
    "    ax.set_yticks(torch.arange(0.5, H))\n",
    "    ax.set_xticklabels([])\n",
    "    ax.set_yticklabels([])\n",
    "fig.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dd27ef92-1ba7-405a-9545-251f94f29461",
   "metadata": {},
   "source": [
    "We can see that the self-attention maps correspond to the images in the paper (shown in the top of the notebook), illustrating that indeed a custom sparsity pattern is enough to reproduce Swin Transformer without having to ressort to implementing custom code.\n",
    "\n",
    "Plus, it is trivial to extend Swin Transformer with other attention patterns (such as local 2d, axial and more, see [the 2d attetnion patterns notebook](https://github.com/fairinternal/xformers/blob/main/docs/source/2d_attention_patterns.ipynb) for more examples."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "699fd7bc-377b-4786-8dc7-732619ddb89e",
   "metadata": {},
   "source": [
    "## Using Swin Transformers as a sparse Transformer in your model\n",
    "\n",
    "Now that we know that we can represent a Swin Transformer as a particular instantiation of a sparse Transformer, let's use xformers efficient sparse kernels to see\n",
    "what type of speed / memory trade-offs we get by casting a Swin Transformer as a sparse Transformer.\n",
    "\n",
    "To facilitate benchmarking and memory profiling, let's define a function that takes a generic callable and executes it, measuring the execution time and the GPU memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b072ae40-9bf3-4ab8-9717-acf2e8ffe981",
   "metadata": {},
   "outputs": [],
   "source": [
    "def profile_model(fn, min_run_time=2):\n",
    "    torch.cuda.reset_peak_memory_stats()\n",
    "    torch.cuda.synchronize()\n",
    "    res = benchmark.Timer(\n",
    "        stmt='fn()',\n",
    "        globals={\"fn\": fn},\n",
    "        label=\"profile\",\n",
    "        sub_label=\"\",\n",
    "        description=\"\"\n",
    "    ).blocked_autorange(min_run_time=min_run_time)\n",
    "    torch.cuda.synchronize()\n",
    "    memory = torch.cuda.max_memory_allocated() / 2 ** 20\n",
    "    memory = f\"Memory used: {memory} MB\"\n",
    "    print(res)\n",
    "    print(memory)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1edb40c1-98ce-4ae1-a486-42022f3b6b1b",
   "metadata": {},
   "source": [
    "Now it comes the core of it. We will implement an `Attention` module following the same API and modules as timm's, but using our `scaled_dot_product_attention` function.\n",
    "\n",
    "Note the similarities between this implementation and the one from the [vision transformers notebook](https://github.com/fairinternal/xformers/blob/main/docs/source/vision_transformers.ipynb).\n",
    "\n",
    "Note that we are not implementing relative positional embedding for simplicity"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8def591e-be74-489a-af6b-45f90e13aadc",
   "metadata": {},
   "outputs": [],
   "source": [
    "from timm.models.layers import Mlp, DropPath\n",
    "\n",
    "\n",
    "# exact the same one as from https://github.com/fairinternal/xformers/blob/main/docs/source/vision_transformers.ipynb\n",
    "class Attention(torch.nn.Module):\n",
    "    def __init__(\n",
    "        self,\n",
    "        dim,\n",
    "        num_heads=8,\n",
    "        qkv_bias=False,\n",
    "        attn_drop=0.0,\n",
    "        proj_drop=0.0,\n",
    "        attn_mask=None,\n",
    "        **kwargs\n",
    "    ):\n",
    "        super().__init__()\n",
    "        self.num_heads = num_heads\n",
    "\n",
    "        self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias)\n",
    "        self.attn_drop = torch.nn.Dropout(attn_drop)\n",
    "        self.proj = torch.nn.Linear(dim, dim)\n",
    "        self.proj_drop = torch.nn.Dropout(proj_drop)\n",
    "        self.attn_mask = attn_mask\n",
    "\n",
    "    def forward(self, x):\n",
    "        B, N, C = x.shape\n",
    "        qkv = (\n",
    "            self.qkv(x)\n",
    "            .reshape(B, N, 3, self.num_heads, C // self.num_heads)\n",
    "            .permute(2, 0, 3, 1, 4)\n",
    "        )\n",
    "\n",
    "        qkv = qkv.flatten(1, 2)\n",
    "\n",
    "        q, k, v = qkv.unbind()\n",
    "        \n",
    "        x = scaled_dot_product_attention(q, k, v, self.attn_mask, dropout=self.attn_drop)\n",
    "        \n",
    "        x = x.reshape(B, self.num_heads, N, C // self.num_heads)\n",
    "\n",
    "        x = x.transpose(1, 2).reshape(B, N, C)\n",
    "        x = self.proj(x)\n",
    "        x = self.proj_drop(x)\n",
    "        return x\n",
    "    \n",
    "\n",
    "# almost copy and paste from timm's implementation, but removing the unneeded elements\n",
    "# as we don't need to perform the image partitioning anymore\n",
    "# Note that we call our swin_attention_pattern in the constructor\n",
    "# to generate the custom sparsity pattern\n",
    "class SwinTransformerBlock(nn.Module):\n",
    "    r\"\"\" Swin Transformer Block.\n",
    "    Args:\n",
    "        dim (int): Number of input channels.\n",
    "        input_resolution (tuple[int]): Input resulotion.\n",
    "        num_heads (int): Number of attention heads.\n",
    "        window_size (int): Window size.\n",
    "        shift_size (int): Shift size for SW-MSA.\n",
    "        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.\n",
    "        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True\n",
    "        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.\n",
    "        drop (float, optional): Dropout rate. Default: 0.0\n",
    "        attn_drop (float, optional): Attention dropout rate. Default: 0.0\n",
    "        drop_path (float, optional): Stochastic depth rate. Default: 0.0\n",
    "        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU\n",
    "        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,\n",
    "                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,\n",
    "                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):\n",
    "        super().__init__()\n",
    "        self.dim = dim\n",
    "        self.input_resolution = input_resolution\n",
    "        self.num_heads = num_heads\n",
    "        self.window_size = window_size\n",
    "        self.shift_size = shift_size\n",
    "        self.mlp_ratio = mlp_ratio\n",
    "        if min(self.input_resolution) <= self.window_size:\n",
    "            # if window size is larger than input resolution, we don't partition windows\n",
    "            self.shift_size = 0\n",
    "            self.window_size = min(self.input_resolution)\n",
    "        assert 0 <= self.shift_size < self.window_size, \"shift_size must in 0-window_size\"\n",
    "        \n",
    "        # create swin_attention_pattern sparsity pattern\n",
    "        attn_mask = AP.swin_attention_pattern(input_resolution[0], input_resolution[1], window_size, shift_size=shift_size)\n",
    "        attn_mask = SparseCS(attn_mask, torch.device(\"cuda\"))\n",
    "\n",
    "        self.norm1 = norm_layer(dim)\n",
    "        self.attn = Attention(\n",
    "            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,\n",
    "            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,\n",
    "            attn_mask=attn_mask\n",
    "        )\n",
    "\n",
    "        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()\n",
    "        self.norm2 = norm_layer(dim)\n",
    "        mlp_hidden_dim = int(dim * mlp_ratio)\n",
    "        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)\n",
    "\n",
    "    def forward(self, x):\n",
    "        H, W = self.input_resolution\n",
    "        B, L, C = x.shape\n",
    "        assert L == H * W, \"input feature has wrong size\"\n",
    "\n",
    "        shortcut = x\n",
    "        x = self.norm1(x)\n",
    "\n",
    "        # W-MSA/SW-MSA\n",
    "        x = self.attn(x)  # nW*B, window_size*window_size, C\n",
    "\n",
    "        # FFN\n",
    "        x = shortcut + self.drop_path(x)\n",
    "        x = x + self.drop_path(self.mlp(self.norm2(x)))\n",
    "\n",
    "        return x"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e55578e0-1f4f-4a51-ab6c-eaa526e28b79",
   "metadata": {},
   "source": [
    "Let's write a function that given a model, will replace all instances of timm.models.swin_transformer.SwinTransformerBlock with our own implementation, which leverages `scaled_dot_product_attention` and `swin_attention_pattern` from xformers\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "81e9c20f-69fb-48cc-b4e6-debb404e2240",
   "metadata": {},
   "outputs": [],
   "source": [
    "def replace_attn_with_xformers_one(module):\n",
    "    module_output = module\n",
    "    if isinstance(module, timm.models.swin_transformer.SwinTransformerBlock):\n",
    "                \n",
    "        module_output = SwinTransformerBlock(module.dim, module.input_resolution, module.num_heads, module.window_size, module.shift_size, module.mlp_ratio)\n",
    "        module_output.drop_path = module.drop_path\n",
    "        module_output.norm1 = module.norm1\n",
    "        module_output.norm2 = module.norm2\n",
    "        module_output.mlp = module.mlp\n",
    "        \n",
    "        module_output.attn.qkv = module.attn.qkv\n",
    "        module_output.attn.attn_drop = module.attn.attn_drop\n",
    "        module_output.attn.proj = module.attn.proj\n",
    "        module_output.attn.proj_drop = module.attn.proj_drop\n",
    "        \n",
    "        module_output.train(module.training)\n",
    "    \n",
    "    else:\n",
    "\n",
    "        for name, child in module.named_children():\n",
    "            module_output.add_module(name, replace_attn_with_xformers_one(child))\n",
    "    del module\n",
    "    return module_output"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "12eaa142-ae39-4a8e-bad9-20b3738e38d2",
   "metadata": {},
   "source": [
    "Now it's time to create our Swin Transformer. Nothing unusual here. Note that we will be keeping a copy of the model, which will be the model to use sparse self-attention"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d04d2cab-f1ec-4151-b41b-0c3406f0d9f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "model = timm.models.create_model(\"swin_base_patch4_window7_224\").cuda().eval()\n",
    "\n",
    "# zero relative positional embedding in original model as we don't implement it here\n",
    "for n, p in model.named_parameters():\n",
    "    if \"relative_position_bias_table\" in n:\n",
    "        torch.nn.init.zeros_(p)\n",
    "\n",
    "model_sparse = copy.deepcopy(model)\n",
    "model_sparse = replace_attn_with_xformers_one(model_sparse)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "42d3792a-c219-445e-bc24-e32d3d729a02",
   "metadata": {},
   "source": [
    "Let's new create an input tensor verify if both the sparse and the baseline versions produce the same results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "52c4fce7-2e5a-4214-8944-cd54832f90f8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Median absolute difference: 3.70e-05\n",
      "Max absolute difference:    2.51e-04\n"
     ]
    }
   ],
   "source": [
    "i = torch.rand(32, 3, 224, 224).cuda()\n",
    "\n",
    "with torch.no_grad():\n",
    "    r0 = model(i)\n",
    "    r1 = model_sparse(i)\n",
    "\n",
    "diff = (r0 - r1).abs()\n",
    "    \n",
    "print(f\"Median absolute difference: {diff.median().item():.2e}\")\n",
    "print(f\"Max absolute difference:    {diff.max().item():.2e}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f7d83f9-b21b-48de-89dd-c255fef30f98",
   "metadata": {},
   "source": [
    "The results are almost the same. The reason why they are not equivalent up to float precision is because we currently assume that the number of non-zero elements in the sparse matrix is a multiple of 4, so up to 3 elements in the self-attention might be dropped in order to satisfy this constraint.\n",
    "This constraint will be lifted in the future.\n",
    "\n",
    "Let's new benchmark both the sparse and the baseline versions"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8ba0279a-ad14-4295-bb37-5778f60650dc",
   "metadata": {},
   "source": [
    "### Profiling the baseline (dense) model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "909b23f2-2ac7-488e-9447-089496d37346",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Forward only\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd83b4d60>\n",
      "profile\n",
      "  Median: 212.33 ms\n",
      "  IQR:    9.49 ms (210.94 to 220.43)\n",
      "  10 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 1448.72509765625 MB\n",
      "\n",
      "Forward + backward\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd868abe0>\n",
      "profile\n",
      "  Median: 626.96 ms\n",
      "  IQR:    12.91 ms (623.15 to 636.06)\n",
      "  4 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 8615.0703125 MB\n"
     ]
    }
   ],
   "source": [
    "print(\"Forward only\")\n",
    "with torch.no_grad():\n",
    "    profile_model(lambda : model(i))\n",
    "print(\"\")\n",
    "print(\"Forward + backward\")\n",
    "profile_model(lambda : model(i).sum().backward())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "97bcc2c6-a2e7-403c-8b43-33c5f818a7c1",
   "metadata": {},
   "source": [
    "### Profiling the sparse model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "4e17e1aa-6970-4b6f-9adb-4e51b55cb4ac",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Forward only\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd71b44c0>\n",
      "profile\n",
      "  Median: 208.51 ms\n",
      "  IQR:    1.29 ms (208.06 to 209.34)\n",
      "  10 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 1636.5673828125 MB\n",
      "\n",
      "Forward + backward\n",
      "<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd83b4370>\n",
      "profile\n",
      "  Median: 607.60 ms\n",
      "  IQR:    9.11 ms (605.09 to 614.20)\n",
      "  4 measurements, 1 runs per measurement, 1 thread\n",
      "Memory used: 8770.02001953125 MB\n"
     ]
    }
   ],
   "source": [
    "print(\"Forward only\")\n",
    "with torch.no_grad():\n",
    "    profile_model(lambda : model_sparse(i))\n",
    "print(\"\")\n",
    "print(\"Forward + backward\")\n",
    "profile_model(lambda : model_sparse(i).sum().backward())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6cfa7340-8d7c-4be5-861b-2354324f50ca",
   "metadata": {},
   "source": [
    "Those results indicate that the sparse model achieves the same speed as the manually-implemented dense version.\n",
    "This is very encouraging, as with a generic sparse implementation we are able to achieve comparable speed versus the optimized dense implementation, while being substantially simpler to implement (specially on the windows shift optimizations, see [\\[1\\]](https://github.com/microsoft/Swin-Transformer/issues/52) and [\\[2\\]](https://github.com/microsoft/Swin-Transformer/issues/38) for examples).\n",
    "\n",
    "From the memory perspective, the sparse model uses slightly more memory, as it needs to keep the indices of the non-zero elements in memory, while in the baseline dense model the structure is encoded directly in the code. Note that we can further reduce the memory needs by re-using the same sparse pattern over multiple layers."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "95caaf5c-53b4-493e-8a66-1ad09d1917f6",
   "metadata": {},
   "source": [
    "# Wrapping up\n",
    "\n",
    "In this notebook, we've shown that Swin Transformers can be casted as a sparse transformer, and we've shown that a generic implementation based on the sparse kernels from `xformers` is able to match performances compared to the hand-crafted implementation.\n",
    "\n",
    "We hope that this will further illustrate the power of custom sparsity patterns, and we hope xformers will enable new research directions on large sequences.\n",
    "\n",
    "Do not hesitate to reach out if you have questions."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}