Spaces:
Runtime error
Runtime error
File size: 71,697 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
{
"cells": [
{
"cell_type": "markdown",
"id": "e69e9896-4be5-4706-9b49-cb772d02e8d4",
"metadata": {},
"source": [
"# Swin Transformers as a special sparsity pattern\n",
"\n",
"In this notebook, we will show how the recently-introduced [Swin Transformers](https://arxiv.org/abs/2103.14030) can be cast\n",
"as a sparse transformer with a particular sparsity pattern.\n",
"\n",
"\n",
"Swin Transformers is a hierarchical Transformer whose representation is computed with shifted windows.\n",
"The shifted windowing scheme brings efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection\n",
"\n",
"<img src=\"https://github.com/microsoft/Swin-Transformer/raw/main/figures/teaser.png\" alt=\"drawing\" width=\"50%\"/>\n",
"\n",
"\n",
"In this notebook, we will cover:\n",
"- what type of self-attention is needed to replicate a Swin Transformer\n",
"- we will show how one can modify their pre-trained Swin Transformer to use the sparse kernels from xformers instead of hand writing the Swin Transformer self-attention by hand.\n",
"\n",
"Let's start with a few imports. In this notebook, the vanilla Swin Transformer will be taken from `timm`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1beec17c-cdec-4c54-afca-61423c1aab58",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import copy\n",
"import torch\n",
"from torch import nn\n",
"from torch.utils import benchmark\n",
"\n",
"import xformers.components.attention.attention_patterns as AP\n",
"from xformers.components.attention.core import scaled_dot_product_attention\n",
"from xformers.components.attention._sputnik_sparse import SparseCS\n",
"\n",
"import timm\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "9072a48e-ba89-4093-ae7e-22706602f11e",
"metadata": {},
"source": [
"## What sparsity pattern does Swin Transformer correspond to?\n",
"\n",
"In xformers, we provide for reference a default implementation of the attention pattern that corresponds to the Swin Transformer architecture.\n",
"\n",
"It can be found together with the other attention patterns in `xformers.components.attention.attention_patterns`.\n",
"\n",
"Let's try it out on the example case from above, on an image of size 8x8, and windows of size 4:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "57323b78-3b3b-457a-95d8-1f55fdcdddd6",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAD6CAYAAABeQBU0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAHZUlEQVR4nO3dsW4VRxiG4T0hSJELChQKIlmhoiQpkLkACt8sN3AkuACQkCyXR2lo0iQQiShWkmZSpALZu94Zjdef53lK2+vfxTm8GuTfsyulTABAlm+2/gEAgPUEHAACCTgABBJwAAgk4AAQSMABINC3a774+4f3ypPj+1WDDudHVc89fXZR9ZyZjObv6a/p3/LPbu1zc+/rXq+tude71zN86c/pj99LKY++/viqgD85vj+92x9X/QCnP/xc9dx+f1b1nJmM5m15U/Xc3Pu612tr7vXu9Qxfel1efbjs4/4LHQACCTgABBJwAAgk4AAQaNUvsQF3z+H86MpfHNv/elb9fed+GW3uc71mwl3jBA4AgQQcAAIJOAAEEnAACCTgABBIwAEgkIADQKBVe+Bz+6JLanc7W/Y6zew3E4BtOYEDQCABB4BAAg4AgQQcAAIJOAAEEnAACOQ6UeBKvdYba68a7TUTEjmBA0AgAQeAQAIOAIEEHAACCTgABBJwAAi0ao3s6bOLab8/qxp007eYmQnXM/e+bnltzT3ba93Le4GROIEDQCABB4BAAg4AgQQcAAIJOAAEEnAACOQ2Mhjc4fzoyvWrXuuNtStmLTPhrnECB4BAAg4AgQQcAAIJOAAEEnAACCTgABBIwAEg0Ko98Ll90SW1u50te51m9psJwLacwAEgkIADQCABB4BAAg4AgQQcAAIJOAAEcp0ocKVe6421V432mgmJnMABIJCAA0AgAQeAQAIOAIEEHAACCTgABFq1Rvb02cW0359VDbrpW8zMhG1t8bqcm7n0Huvx844yc2muf6P6cAIHgEACDgCBBBwAAgk4AAQScAAIJOAAEEjAASCQ60SBISztItf+LYaWq1Hvysylz/eaOToncAAIJOAAEEjAASCQgANAIAEHgEACDgCBVq2RHc6Pbvy6zJY1AjP7zQRgW07gABBIwAEgkIADQCABB4BAAg4AgQQcAAK5jQxgql+rnFvjbLnBK2nm0vfdYuYInMABIJCAA0AgAQeAQAIOAIEEHAACCTgABNqVUq79xc9/+q682x9XDbrpW8zMZDRvy5vpc/m0W/vcg93D8mL3ssePdKtssZI0ysyluf6NavO6vHpfSnn+9cedwAEgkIADQCABB4BAAg4AgQQcAAIJOAAEEnAACOQ6UWAIS7vItX+LoeUazbsyc+nzvWaOzgkcAAIJOAAEEnAACCTgABBIwAEgkIADQKBVa2SH86Mbvy6zZY3AzH4zAdiWEzgABBJwAAgk4AAQSMABIJCAA0AgAQeAQG4jA5jq1yrn1jhbbvBKmrn0fbeYOQIncAAIJOAAEEjAASCQgANAIAEHgEACDgCBdqWUa3/xg93D8mL3suOPw02qvcVsmvJuTxth5tvyZvpcPu3WPjfK+3qLlaRRZi7NHX3dq9Xr8up9KeX51x93AgeAQAIOAIEEHAACCTgABBJwAAgk4AAQSMABIJDrRIEhLO0i99jbH2Xm0ue3+DsMI3ACB4BAAg4AgQQcAAIJOAAEEnAACCTgABDIGtnAtrgqs2WumfNOTi+qngMyOYEDQCABB4BAAg4AgQQcAAIJOAAEEnAACGSNDGDqs/bXcoNX0syl77vFzBE4gQNAIAEHgEACDgCBBBwAAgk4AAQScAAIJOAAEMge+MC2uCqzZa6Z8w7lY9Vzo+i1Uzz33Cgzl+b2mjk6J3AACCTgABBIwAEgkIADQCABB4BAAg4AgayRAUNoWYOq/b6jzFz6/BZrnCNwAgeAQAIOAIEEHAACCTgABBJwAAgk4AAQyBrZwLa4aatlrpnzTk4vqp4DMjmBA0AgAQeAQAIOAIEEHAACCTgABBJwAAhkjQxg6rP213KDV9LMpe+7xcwROIEDQCABB4BAAg4AgQQcAAIJOAAEEnAACCTgABDIHvjAtrgqs2WumfMO5WPVc7TZYhfZzP+17MPX2mLmVZzAASCQgANAIAEHgEACDgCBBBwAAgk4AASyRgZApLm1rV5rslvMvIoTOAAEEnAACCTgABBIwAEgkIADQCABB4BA1sgGtsVNWy1zzZx3cnpR9RyQyQkcAAIJOAAEEnAACCTgABBIwAEgkIADQCABB4BA9sABuHN6/Z2L2qtGW2bee3z5x53AASCQgANAIAEHgEACDgCBBBwAAgk4AASyRjawLa7KbJlr5rxD+Vj1HKSqXfdaMvfsFjOn6ZdLP+oEDgCBBBwAAgk4AAQScAAIJOAAEEjAASCQNTIAItWue7V83y1mXsUJHAACCTgABBJwAAgk4AAQSMABIJCAA0Aga2QD2+KmrZa5Zs47Ob2oeg7I5AQOAIEEHAACCTgABBJwAAgk4AAQSMABIJCAA0Age+AA3Dm9/s5F7VWjLTPvPb78407gABBIwAEgkIADQCABB4BAAg4AgQQcAALtSinX/+Ld7rdpmj70+3GABj+WUh6tfcj7Gm69S9/bqwIOANwO/gsdAAIJOAAEEnAACCTgABBIwAEgkIADQCABB4BAAg4AgQQcAAL9B2NyMknQIrs/AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 504x1008 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"H, W = 8, 8\n",
"window_size = 4\n",
"\n",
"mask = AP.swin_attention_pattern(H, W, window_size, shift_size=0)\n",
"mask_shifted = AP.swin_attention_pattern(H, W, window_size, shift_size=2)\n",
"\n",
"fig = plt.figure(figsize=(7, 14))\n",
"ax = fig.add_subplot(1, 2, 1)\n",
"ax.imshow(mask)\n",
"plt.xticks([])\n",
"plt.yticks([])\n",
"ax = fig.add_subplot(1, 2, 2)\n",
"ax.imshow(mask_shifted)\n",
"plt.xticks([])\n",
"plt.yticks([])\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "26ca8db6-9897-4239-89fb-f48b1f0d75b8",
"metadata": {},
"source": [
"Now let's visualize the self-attention for every pixel in the image. Every sub-image corresponds to the self-attention for one pixel"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "10fe9b1e-a443-4c54-a141-d3d08969efe6",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANYCAYAAAAolBclAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABD9ElEQVR4nO3dwWpcSZY/4Ii/a9piCgkkqhceMMzCdO3sgRTWA0jgF9Az5EP1M+gFBNIDyNhg964bL2Yw2JsaNajpxtWDif+iE3EXSSoiK+7NCN3vg1okHJ8KxdEvM0+R5YwppQAAAMBv8/92fQAAAIDHwHIFAABQgeUKAACgAssVAABABZYrAACACn4oKf7p6En6z+f/llX7/k+/hsXLp9m9S+q36b0fDrNq/xb+ml07dv238Pfwz/RrzG6+UjKnEMa/+5LeY93lBHP9JaX0++w/sCJT09bL1GZj3v1UmfpdfJr2wo9jnWnU3/uW8p1b/9+f/y/8cvu9OFMlcwqhnef7P7z8RzN3v0XvrjNVWi9Tm7Xy/PcYMxVL/ir241d76e3l86zaJ88+he9fX2T3LqnfpvdZPM+qvUoX2bVj19+k63CXbosDVjKnEMa/+5LeY93lBHN9n1I6zv4DKzI1bb1MbTbm3U+VqYN4lE7i6VhnGvX3vqV859a/fvM5vPv4rThTJXMKoZ3n+8svH5q5+y16d52p0nqZ2qyV57/HmCkfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQQUwpbS6IcRlCWK4eLkY/Eff2w2G4S7cxp9acdu59Suk4p9CsdkemuiJTHVi8fBreffwmU32QqQ7IVFfWZurB5Wro+NVeenv5PKv2ybNP4fvXF9m9S+q36X0Wz7Nqr9JFdu3Y9TfpOvuN4FDJnEIY/+5Leo91lxPMNftFa0impq2Xqc3GvPupMnUQj9JJPB3rTKP+3reU79z6128+Z78RHCqZUwjtPN9ffvnQzN1v0bvrTJXWy9RmrTz/PcZM+VggAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5ergY/UTc2w+H4S7dZn1Ltznt3Npv6V7HrHZHproiUx1YvHwa3n38JlN9kKkOyFRX1mbqweVq6PjVXnp7+Tyr9smzT+H71xfZvUvqt+l9Fs+zaq/SRXbt2PU36Tr7jeBQyZxCGP/uS3qPdZcTzDX7RWtIpqatl6nNxrz7qTJ1EI/SSTwd60yj/t63lO/c+tdvPme/ERwqmVMI7TzfX3750Mzdb9G760yV1svUZq08/z3GTPlYIAAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKYkppc0GMyxDCcvVwMfqJuLcfDsNduo05tea0c+9TSsc5hWa1OzLVFZnqwOLl0/Du4zeZ6oNMdUCmurI2Uw8uV0PHr/bS28vnWbVPnn0K37++yO5dUr9N77N4nlV7lS6ya8euv0nX2W8Eh0rmFML4d1/Se6y7nGCu2S9aQzI1bb1MbTbm3U+VqYN4lE7i6VhnGvX3vqV859a/fvM5+43gUMmcQmjn+f7yy4dm7n6L3l1nqrRepjZr5fnvMWbKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKvihpPgvf/r38OY//iuz+lNBbWl9ee85KZtTCGPffUnvuZGpPsgUU+jxd+wv6X8L+vbvX/fSxt173n5YS3cvU+s9xkzFlNLGPxZjXIYQlquHi4J/I7/RfjgMd+k25tSa0869Tykd5xSa1e7IVFdkqgMy1RWZ6oBMdWVtph5croYO4lE6iadZtVfpIpzF8+zeJfW99i6tv0nX2QEbKplT6Zl6vfsJ5pr9ojUkU9PWy1RXZ5GpDs4yt0y1dJa5Zaq0vtfeLWaqtH5Gvddmyv9zBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYfa3dJvTzq39lu51zGp3ZKorMtUBmeqKTHVAprqyNlMPLldDB/EoncTTrNqrdBHO4nl275L6XnuX1t+k6+yADZXMqfRMvd79BHPNftEakqlp62Wqq7PIVAdnmVumWjrL3DJVWt9r7xYzVVo/o95rM+VjgQAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqiCmlzQUxLkMIy9XDxegn4t5+OAx36Tbm1JrTzr1PKR3nFJrV7shUV2SqAzLVFZnqgEx1ZW2mHlyuhg7iUTqJp1m1V+kinMXz7N4l9b32Lq2/SdfZARsqmVPpmXq9+wnmmv2iNSRT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912bKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjjM/pZuc9q5td/SvY5Z7Y5MdUWmOiBTXZGpDshUV9Zm6sHlauggHqWTeJpVe5Uuwlk8z+5dUt9r79L6m3SdHbChkjmVnqnXu59grtkvWkMyNW29THV1Fpnq4Cxzy1RLZ5lbpkrre+3dYqZK62fUe22mfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5evhzCOHPmb1/CiH8UnCWkvpee5fW/5xS2s8p/A1zKj1Tr3c/9lynmFWv9yNT9Wpb6j32WWSqj7PMLVMtnWVumSqt77V3i5kqrZ9L7/WzSimN8k8I4d1Y9b32HvssU8yqpZ+3ld5TzarX+2np7mXq8Z5l7Dm19vO2cpa5Zaqls8wtUy3dT0u9W5zV3Hv7WCAAAEAFlisAAIAKxlyu/jhifa+9S+tLe2+rlfvptfc29dvo9X5aunuZ2l29TO2uvqXe22rl5y2t77X3ttz99L231dLP8Kh6P/gXWgAAAPAwHwsEAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVPBDSfFPR0/Sfz7/t6za93/6NSxePs3uXVK/Te/9cJhV+7fw1+zaseu/hb+Hf6ZfY3bzlZI5hTD+3Zf0HusuJ5jrLyml32f/gRWZmrZepjYb8+6nytTv4tO0F34c60yj/t63lO/c+v/+/H/hl9vvxZkqmVMI7Tzf/+HlP5q5+y16d52p0nqZ2qyV57/HmKmYUspucvxqL729fJ5V++TZp/D964vs3iX12/Q+i+dZtVfpIrt27PqbdB3u0m1xwErmFML4d1/Se6y7nGCu71NKx9l/YEWmpq2Xqc3GvPupMnUQj9JJPB3rTKP+3reU79z6128+h3cfvxVnqmROIbTzfH/55UMzd79F764zVVovU5u18vz3GDPlY4EAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjgMd+k25tSa0869Tykd5xSa1e7IVFdkqgOLl0/Du4/fZKoPMtUBmerK2kw9uFwNHb/aS28vn2fVPnn2KXz/+iK7d0n9Nr3P4nlW7VW6yK4du/4mXWe/ERwqmVMI4999Se+x7nKCuWa/aA3J1LT1MrXZmHc/VaYO4lE6iadjnWnU3/uW8p1b//rN5+w3gkMlcwqhnef7yy8fmrn7LXp3nanSepnarJXnv8eYKR8LBAAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKggppQ2F8S4DCEsVw8Xo5+Ie/vhMNyl26xv6TannVv7Ld3rmNXuyFRXZKoDi5dPw7uP32SqDzLVAZnqytpMPbhcDR2/2ktvL59n1T559il8//oiu3dJ/Ta9z+J5Vu1VusiuHbv+Jl1nvxEcKplTCOPffUnvse5ygrlmv2gNydS09TK12Zh3P1WmDuJROomnY51p1N/7lvKdW//6zefsN4JDJXMKoZ3n+8svH5q5+y16d52p0nqZ2qyV57/HmCkfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQQUwpbS6IcRlCWK4eLkY/Eff2w2G4S7cxp9acdu59Suk4p9CsdkemuiJTHVi8fBreffwmU32QqQ7IVFfWZurB5Wro+NVeenv5PKv2ybNP4fvXF9m9S+q36X0Wz7Nqr9JFdu3Y9TfpOvuN4FDJnEIY/+5Leo91lxPMNftFa0impq2Xqc3GvPupMnUQj9JJPB3rTKP+3reU79z6128+Z78RHCqZUwjtPN9ffvnQzN1v0bvrTJXWy9RmrTz/PcZM+VggAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIIfSor/8qd/D2/+478yqz8V1JbWl/eek7I5hTD23Zf0nhuZ6oNMMYUef8f+kv63oG///nUvbdy95+2HtXT3MrXeY8xUTClt/GMxxmUIYbl6uCj4N/Ib7YfDcJdus76l25x2bu23dK9jVrsjU12RqQ7IVFdkqgMy1ZW1mXpwuRo6iEfpJJ5m1V6li3AWz7N7l9T32ru0/iZdZwdsqGROpWfq9e4nmGv2i9aQTE1bL1NdnUWmOjjL3DLV0lnmlqnS+l57t5ip0voZ9V6bKf/PFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKYkppc0GMyxDCcvVwMfqJuLcfDsNduo05tea0c+9TSsc5hWa1OzLVFZnqgEx1RaY6IFNdWZupB5eroYN4lE7iaVbtVboIZ/E8u3dJfa+9S+tv0nV2wIZK5lR6pl7vfoK5Zr9oDcnUtPUy1dVZZKqDs8wtUy2dZW6ZKq3vtXeLmSqtn1HvtZnysUAAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACmJKaXNBjMsQwnL1cDH6ibi3Hw6zv6XbnHZu7bd0r2NWuyNTXZGpDshUV2SqAzLVlbWZenC5GjqIR+kknmbVXqWLcBbPs3uX1Pfau7T+Jl1nB2yoZE6lZ+r17ieYa/aL1pBMTVsvU12dRaY6OMvcMtXSWeaWqdL6Xnu3mKnS+hn1XpspHwsEAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUEFMKW0uiHEZQliuHi5GPxH39sNhuEu3MafWnHbufUrpOKfQrHZHproiUx2Qqa7IVAdkqitrM/XgcjV0EI/SSTzNqr1KF+Esnmf3LqnvtXdp/U26zg7YUMmcSs/U691PMNfsF60hmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh7+HEL4c2bvn0IIvxScpaS+196l9T+nlPZzCn/DnErP1Ovdjz3XKWbV6/3IVL3alnqPfRaZ6uMsc8tUS2eZW6ZK63vt3WKmSuvn0nv9rFJKo/wTQng3Vn2vvcc+yxSzaunnbaX3VLPq9X5aunuZerxnGXtOrf28rZxlbplq6Sxzy1RL99NS7xZnNffePhYIAABQgeUKAACggjGXqz+OWN9r79L60t7bauV+eu29Tf02er2flu5epnZXL1O7q2+p97Za+XlL63vtvS13P33vbbX0Mzyq3g/+hRYAAAA8zMcCAQAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACr4oaT4p6Mn6T+f/1tW7fs//RoWL59m9y6p36b3fjjMqv1b+Gt27dj138Lfwz/TrzG7+UrJnEIY/+5Leo91lxPM9ZeU0u+z/8CKTE1bL1ObjXn3U2Xqd/Fp2gs/jnWmUX/vW8p3bv1/f/6/8Mvt9+JMlcwphHae7//w8h/N3P0WvbvOVGm9TG3WyvPfY8xUTCllNzl+tZfeXj7Pqn3y7FP4/vVFdu+S+m16n8XzrNqrdJFdO3b9TboOd+m2OGAlcwph/Lsv6T3WXU4w1/cppePsP7AiU9PWy9RmY979VJk6iEfpJJ6OdaZRf+9byndu/es3n8O7j9+KM1UypxDaeb6//PKhmbvfonfXmSqtl6nNWnn+e4yZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgApiSmlzQYzLEMJy9XAx+om4tx8Ow126zfqWbnPaubXf0r2OWe2OTHVFpjqwePk0vPv4Tab6IFMdkKmurM3Ug8vV0PGrvfT28nlW7ZNnn8L3ry+ye5fUb9P7LJ5n1V6li+zasetv0nX2G8GhkjmFMP7dl/Qe6y4nmGv2i9aQTE1bL1ObjXn3U2XqIB6lk3g61plG/b1vKd+59a/ffM5+IzhUMqcQ2nm+v/zyoZm736J315kqrZepzVp5/nuMmfKxQAAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVxJTS5oIYlyGE5erhYvQTcW8/HIa7dBtzas1p596nlI5zCs1qd2SqKzLVgcXLp+Hdx28y1QeZ6oBMdWVtph5croaOX+2lt5fPs2qfPPsUvn99kd27pH6b3mfxPKv2Kl1k145df5Ous98IDpXMKYTx776k91h3OcFcs1+0hmRq2nqZ2mzMu58qUwfxKJ3E07HONOrvfUv5zq1//eZz9hvBoZI5hdDO8/3llw/N3P0WvbvOVGm9TG3WyvPfY8yUjwUCAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVBBTSpsLYlyGEJarh4vRT8S9/XAY7tJt1rd0m9POrf2W7nXMandkqisy1YHFy6fh3cdvMtUHmeqATHVlbaYeXK6Gjl/tpbeXz7Nqnzz7FL5/fZHdu6R+m95n8Tyr9ipdZNeOXX+TrrPfCA6VzCmE8e++pPdYdznBXLNftIZkatp6mdpszLufKlMH8SidxNOxzjTq731L+c6tf/3mc/YbwaGSOYXQzvP95ZcPzdz9Fr27zlRpvUxt1srz32PMlI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFTwQ0nxX/707+HNf/xXZvWngtrS+vLec1I2pxDGvvuS3nMjU32QKabQ4+/YX9L/FvTt37/upY2797z9sJbuXqbWe4yZiimljX8sxrgMISxXDxcF/0Z+o/1wGO7SbcypNaede59SOs4pNKvdkamuyFQHZKorMtUBmerK2kw9uFwNHcSjdBJPs2qv0kU4i+fZvUvqe+1dWn+TrrMDNlQyp9Iz9Xr3E8w1+0VrSKamrZeprs4iUx2cZW6Zauksc8tUaX2vvVvMVGn9jHqvzZT/5woAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Psb+k2p51b+y3d65jV7shUV2SqAzLVFZnqgEx1ZW2mHlyuhg7iUTqJp1m1V+kinMXz7N4l9b32Lq2/SdfZARsqmVPpmXq9+wnmmv2iNSRT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912bKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVBBTSpsLYlyGEJarh4vRT8S9/XAY7tJtzKk1p517n1I6zik0q92Rqa7IVAdkqisy1QGZ6sraTD24XA0dxKN0Ek+zaq/SRTiL59m9S+p77V1af5OuswM2VDKn0jP1evcTzDX7RWtIpqatl6muziJTHZxlbplq6Sxzy1Rpfa+9W8xUaf2Meq/NlI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKggppQ2F8S4DCEsVw8Xo5+Ie/vhMNyl25hTa0479z6ldJxTaFa7I1NdkakOyFRXZKoDMtWVtZl6cLkaOohH6SSeZtVepYtwFs+ze5fU99q7tP4mXWcHbKhkTqVn6vXuJ5hr9ovWkExNWy9TXZ1Fpjo4y9wy1dJZ5pap0vpee7eYqdL6GfVemykfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACoIKaUNhfEuAwhLFcPfw4h/Dmz908hhF8KzlJS32vv0vqfU0r7OYW/YU6lZ+r17see6xSz6vV+ZKpebUu9xz6LTPVxlrllqqWzzC1TpfW99m4xU6X1c+m9flYppVH+CSG8G6u+195jn2WKWbX087bSe6pZ9Xo/Ld29TD3es4w9p9Z+3lbOMrdMtXSWuWWqpftpqXeLs5p7bx8LBAAAqMByBQAAUMGYy9UfR6zvtXdpfWnvbbVyP7323qZ+G73eT0t3L1O7q5ep3dW31Htbrfy8pfW99t6Wu5++97Za+hkeVe8H/0ILAAAAHuZjgQAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKfigp/unoSfrP5/+WVfv+T7+Gxcun2b1L6rfpvR8Os2r/Fv6aXTt2/bfw9/DP9GvMbr5SMqcQxr/7kt5j3eUEc/0lpfT77D+wIlPT1svUZmPe/VSZ+l18mvbCj2OdadTf+5bynVv/35//L/xy+704UyVzCqGd5/s/vPxHM3e/Re+uM1VaL1ObtfL89xgzFVNK2U2OX+2lt5fPs2qfPPsUvn99kd27pH6b3mfxPKv2Kl1k145df5Ouw126LQ5YyZxCGP/uS3qPdZcTzPV9Suk4+w+syNS09TK12Zh3P1WmDuJROomnY51p1N/7lvKdW//6zefw7uO34kyVzCmEdp7vL798aObut+jddaZK62Vqs1ae/x5jpnwsEAAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFMaW0uSDGZQhhuXq4GP1E3NsPh+Eu3cacWnPaufcppeOcQrPaHZnqikx1YPHyaXj38ZtM9UGmOiBTXVmbqQeXq6HjV3vp7eXzrNonzz6F719fZPcuqd+m91k8z6q9ShfZtWPX36Tr7DeCQyVzCmH8uy/pPdZdTjDX7BetIZmatl6mNhvz7qfK1EE8SifxdKwzjfp731K+c+tfv/mc/UZwqGROIbTzfH/55UMzd79F764zVVovU5u18vz3GDPlY4EAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFcSU0uaCGJchhOXq4WL0E3FvPxyGu3Sb9S3d5rRza7+lex2z2h2Z6opMdWDx8ml49/GbTPVBpjogU11Zm6kHl6uh41d76e3l86zaJ88+he9fX2T3LqnfpvdZPM+qvUoX2bVj19+k6+w3gkMlcwph/Lsv6T3WXU4w1+wXrSGZmrZepjYb8+6nytRBPEon8XSsM436e99SvnPrX7/5nP1GcKhkTiG083x/+eVDM3e/Re+uM1VaL1ObtfL89xgz5WOBAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqIKaXNBTEuQwjL1cPF6Cfi3n44DHfpNubUmtPOvU8pHecUmtXuyFRXZKoDi5dPw7uP32SqDzLVAZnqytpMPbhcDR2/2ktvL59n1T559il8//oiu3dJ/Ta9z+J5Vu1VusiuHbv+Jl1nvxEcKplTCOPffUnvse5ygrlmv2gNydS09TK12Zh3P1WmDuJROomnY51p1N/7lvKdW//6zefsN4JDJXMKoZ3n+8svH5q5+y16d52p0nqZ2qyV57/HmCkfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACo4IeS4r/86d/Dm//4r8zqTwW1pfXlveekbE4hjH33Jb3nRqb6IFNMocffsb+k/y3o279/3Usbd+95+2Et3b1MrfcYMxVTShv/WIxxGUJYrh4uCv6N/Eb74TDcpduYU2tOO/c+pXScU2hWuyNTXZGpDshUV2SqAzLVlbWZenC5GjqIR+kknmbVXqWLcBbPs3uX1Pfau7T+Jl1nB2yoZE6lZ+r17ieYa/aL1pBMTVsvU12dRaY6OMvcMtXSWeaWqdL6Xnu3mKnS+hn1Xpsp/88VAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5ergY/UTc2w+H2d/SbU47t/Zbutcxq92Rqa7IVAdkqisy1QGZ6sraTD24XA0dxKN0Ek+zaq/SRTiL59m9S+p77V1af5OuswM2VDKn0jP1evcTzDX7RWtIpqatl6muziJTHZxlbplq6Sxzy1Rpfa+9W8xUaf2Meq/NlI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKggppQ2F8S4DCEsVw8Xo5+Ie/vhMNyl25hTa0479z6ldJxTaFa7I1NdkakOyFRXZKoDMtWVtZl6cLkaOohH6SSeZtVepYtwFs+ze5fU99q7tP4mXWcHbKhkTqVn6vXuJ5hr9ovWkExNWy9TXZ1Fpjo4y9wy1dJZ5pap0vpee7eYqdL6GfVemykfCwQAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACoIKaUNhfEuAwhLFcPF6OfiHv74TD7W7rNaefWfkv3Oma1OzLVFZnqgEx1RaY6IFNdWZupB5eroYN4lE7iaVbtVboIZ/E8u3dJfa+9S+tv0nV2wIZK5lR6pl7vfoK5Zr9oDcnUtPUy1dVZZKqDs8wtUy2dZW6ZKq3vtXeLmSqtn1HvtZnysUAAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFcSU0uaCGJchhOXq4c8hhD9n9v4phPBLwVlK6nvtXVr/c0ppP6fwN8yp9Ey93v3Yc51iVr3ej0zVq22p99hnkak+zjK3TLV0lrllqrS+194tZqq0fi69188qpTTKPyGEd2PV99p77LNMMauWft5Wek81q17vp6W7l6nHe5ax59Taz9vKWeaWqZbOMrdMtXQ/LfVucVZz7+1jgQAAABVYrgAAACoYc7n644j1vfYurS/tva1W7qfX3tvUb6PX+2np7mVqd/Uytbv6lnpvq5Wft7S+197bcvfT995WSz/Do+r94F9oAQAAwMN8LBAAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQwQ8lxb+LT9Ne+DGr9m/hr2E/HGb3LqnvtXdp/bfw9/DP9GvMbr5SMqfSM/V69xPM9ZeU0u+z/8CKTE1bL1NdnUWmOjjL3DLV0lnmlqnS+l57t5ip0voZ9V6bqaLlai/8GE7iaVbtVbrIri2t77V3af1Nus7uO1Qyp9Iz9Xr3E8z1f7KLB2Rq2nqZ6uosMtXBWeaWqZbOMrdMldb32rvFTJXWz6j32kz5WCAAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACmJKaXNBjMsQwnL1cDH6ibi3Hw7DXbqNObXmtHPvU0rHOYVmtTsy1RWZ6oBMdUWmOiBTXVmbqQeXq6GDeJRO4mlW7VW6CGfxPLt3SX2vvUvrb9J1dsCGSuZUeqZe736CuWa/aA3J1LT1MtXVWWSqg7PMLVMtnWVumSqt77V3i5kqrZ9R77WZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgApiSmlzQYzLEMJy9XAx+om4tx8Os7+l25x2bu23dK9jVrsjU12RqQ7IVFdkqgMy1ZW1mXpwuRo6iEfpJJ5m1V6li3AWz7N7l9T32ru0/iZdZwdsqGROpWfq9e4nmGv2i9aQTE1bL1NdnUWmOjjL3DLV0lnmlqnS+l57t5ip0voZ9V6bKR8LBAAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLtzGn1px27n1K6Tin0Kx2R6a6IlMdkKmuyFQHZKorazP14HI1dBCP0kk8zaq9ShfhLJ5n9y6p77V3af1Nus4O2FDJnErP1OvdTzDX7BetIZmatl6mujqLTHVwlrllqqWzzC1TpfW99m4xU6X1M+q9NlM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACo4IeS4j+8/Ee4vPyQVfvkWQiXX/JqS+u36T0nJXMKYfy7L+k9NzLVB5liCi3lO7f+9Zt/ZPd9DC6/fGjm7j1vP6ylu5ep9R5jpmJKaeMfjDEuQwjL1cNF9r+R32w/HGZ/S7c57dzab+lex6x2R6a6IlMdWLx8Gt59/CZTfZCpDshUV9Zm6sHlauj41V56e/k8q/bJs0/h+9cX2b1L6rfpfRbPs2qv0kV27dj1N+k6+43gUMmcQhj/7kt6j3WXE8w1+0VrSKamrZepzca8+6kydRCP0kk8HetMo/7et5Tv3PrXbz5nvxEcKplTCO083//rv7K3cfdb9O46U6X1MrVZK89/jzFT/p8rAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABXElNLmghiXIYTl6uFi9BNxbz8chrt0G3NqzWnn3qeUjnMKzWp3ZKorMtWBxcun4d3HbzLVB5nqgEx1ZW2mHlyuho5f7aW3l8+zap88+xS+f32R3bukfpveZ/E8q/YqXWTXjl1/k66z3wgOlcwphPHvvqT3WHc5wVyzX7SGZGraepnabMy7nypTB/EoncTTsc406u99S/nOrX/95nP2G8GhkjmF0M7z/eWXD83c/Ra9u85Uab1MbdbK899jzJSPBQIAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUEFNKmwtiXIYQlquHi9FPxL39cBju0m3Wt3Sb086t/Zbudcxqd2SqKzLVgcXLp+Hdx28y1QeZ6oBMdWVtph5croaOX+2lt5fPs2qfPPsUvn99kd27pH6b3mfxPKv2Kl1k145df5Ous98IDpXMKYTx776k91h3OcFcs1+0hmRq2nqZ2mzMu58qUwfxKJ3E07HONOrvfUv5zq1//eZz9hvBoZI5hdDO8/3llw/N3P0WvbvOVGm9TG3WyvPfY8yUjwUCAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqCCmlDYXxLgMISxXDxejn4h7++Ew3KXbmFNrTjv3PqV0nFNoVrsjU12RqQ4sXj4N7z5+k6k+yFQHZKorazP14HI1dPxqL729fJ5V++TZp/D964vs3iX12/Q+i+dZtVfpIrt27PqbdJ39RnCoZE4hjH/3Jb3HussJ5pr9ojUkU9PWy9RmY979VJk6iEfpJJ6OdaZRf+9byndu/es3n7PfCA6VzCmEdp7vL798aObut+jddaZK62Vqs1ae/x5jpnwsEAAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKCCmFLaXBDjMoSwXD38OYTw58zeP4UQfik4S0l9r71L639OKe3nFP6GOZWeqde7H3uuU8yq1/uRqXq1LfUe+ywy1cdZ5papls4yt0yV1vfau8VMldbPpff6WaWURvknhPBurPpee499lilm1dLP20rvqWbV6/20dPcy9XjPMvacWvt5WznL3DLV0lnmlqmW7qel3i3Oau69fSwQAACgAssVAABABWMuV38csb7X3qX1pb231cr99Np7m/pt9Ho/Ld29TO2uXqZ2V99S72218vOW1vfae1vufvre22rpZ3hUvR/8Cy0AAAB4mI8FAgAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFTwQ0nx7+LTtBd+zKr9W/hr2A+H2b1L6nvtXVr/Lfw9/DP9GrObr5TMqfRMvd79BHP9JaX0++w/sCJT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912aqaLnaCz+Gk3iaVXuVLrJrS+t77V1af5Ous/sOlcyp9Ey93v0Ec/2f7OIBmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLtzGn1px27n1K6Tin0Kx2R6a6IlMdkKmuyFQHZKorazP14HI1dBCP0kk8zaq9ShfhLJ5n9y6p77V3af1Nus4O2FDJnErP1OvdTzDX7BetIZmatl6mujqLTHVwlrllqqWzzC1TpfW99m4xU6X1M+q9NlM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Nwl25jTq057dz7lNJxTqFZ7Y5MdUWmOiBTXZGpDshUV9Zm6sHlauggHqWTeJpVe5Uuwlk8z+5dUt9r79L6m3SdHbChkjmVnqnXu59grtkvWkMyNW29THV1Fpnq4Cxzy1RLZ5lbpkrre+3dYqZK62fUe22mfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIKYUtpcEOMyhLBcPVyMfiLu7YfD7G/pNqedW/st3euY1e7IVFdkqgMy1RWZ6oBMdWVtph5croYO4lE6iadZtVfpIpzF8+zeJfW99i6tv0nX2QEbKplT6Zl6vfsJ5pr9ojUkU9PWy1RXZ5GpDs4yt0y1dJa5Zaq0vtfeLWaqtH5GvddmyscCAQAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACr4oaT4Dy//ES4vP2TVPnkWwuWXvNrS+m16z0nJnEIY/+5Les+NTPVBpphCS/nOrX/95h/ZfR+Dyy8fmrl7z9sPa+nuZWq9x5ipmFLa+AdjjMsQwnL1cJH9b+Q32w+H4S7dxpxac9q59yml45xCs9odmeqKTHVg8fJpePfxm0z1QaY6IFNdWZupB5eroeNXe+nt5fOs2ifPPoXvX19k9y6p36b3WTzPqr1KF9m1Y9ffpOvsN4JDJXMKYfy7L+k91l1OMNfsF60hmZq2XqY2G/Pup8rUQTxKJ/F0rDON+nvfUr5z61+/+Zz9RnCoZE4htPN8/6//yt7G3W/Ru+tMldbL1GatPP89xkz5f64AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjgMd+k261u6zWnn1n5L9zpmtTsy1RWZ6sDi5dPw7uM3meqDTHVAprqyNlMPLldDx6/20tvL51m1T559Ct+/vsjuXVK/Te+zeJ5Ve5UusmvHrr9J19lvBIdK5hTC+Hdf0nusu5xgrtkvWkMyNW29TG025t1PlamDeJRO4ulYZxr1976lfOfWv37zOfuN4FDJnEJo5/n+8suHZu5+i95dZ6q0XqY2a+X57zFmyscCAQAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFQQU0qbC2JchhCWq4eL0U/Evf1wGO7SbcypNaede59SOs4pNKvdkamuyFQHFi+fhncfv8lUH2SqAzLVlbWZenC5Gjp+tZfeXj7Pqn3y7FP4/vVFdu+S+m16n8XzrNqrdJFdO3b9TbrOfiM4VDKnEMa/+5LeY93lBHPNftEakqlp62VqszHvfqpMHcSjdBJPxzrTqL/3LeU7t/71m8/ZbwSHSuYUQjvP95dfPjRz91v07jpTpfUytVkrz3+PMVM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQQUwpbS6IcRlCWK4eLkY/Eff2w2G4S7dZ39JtTju39lu61zGr3ZGprshUBxYvn4Z3H7/JVB9kqgMy1ZW1mXpwuRo6frWX3l4+z6p98uxT+P71RXbvkvptep/F86zaq3SRXTt2/U26zn4jOFQypxDGv/uS3mPd5QRzzX7RGpKpaetlarMx736qTB3Eo3QST8c606i/9y3lO7f+9ZvP2W8Eh0rmFEI7z/eXXz40c/db9O46U6X1MrVZK89/jzFTPhYIAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIKYUtpcEOMyhLBcPfw5hPDnzN4/hRB+KThLSX2vvUvrf04p7ecU/oY5lZ6p17sfe65TzKrX+5GperUt9R77LDLVx1nmlqmWzjK3TJXW99q7xUyV1s+l9/pZpZRG+SeE8G6s+l57j32WKWbV0s/bSu+pZtXr/bR09zL1eM8y9pxa+3lbOcvcMtXSWeaWqZbup6XeLc5q7r19LBAAAKACyxUAAEAFYy5XfxyxvtfepfWlvbfVyv302nub+m30ej8t3b1M7a5epnZX31LvbbXy85bW99p7W+5++t7baulneFS9H/wLLQAAAHiYjwUCAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKvihpPh38WnaCz9m1f4t/DXsh8Ps3iX1vfYurf8W/h7+mX6N2c1XSuZUeqZe736Cuf6SUvp99h9Ykalp62Wqq7PIVAdnmVumWjrL3DJVWt9r7xYzVVo/o95rM1W0XO2FH8NJPM2qvUoX2bWl9b32Lq2/SdfZfYdK5lR6pl7vfoK5/k928YBMTVsvU12dRaY6OMvcMtXSWeaWqdL6Xnu3mKnS+hn1XpspHwsEAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUEFMKW0uiHEZQliuHi5GPxH39sNhuEu3MafWnHbufUrpOKfQrHZHproiUx2Qqa7IVAdkqitrM/XgcjV0EI/SSTzNqr1KF+Esnmf3LqnvtXdp/U26zg7YUMmcSs/U691PMNfsF60hmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYfa3dJvTzq39lu51zGp3ZKorMtUBmeqKTHVAprqyNlMPLldDB/EoncTTrNqrdBHO4nl275L6XnuX1t+k6+yADZXMqfRMvd79BHPNftEakqlp62Wqq7PIVAdnmVumWjrL3DJVWt9r7xYzVVo/o95rM+VjgQAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqiCmlzQUxLkMIy9XDxegn4t5+OAx36Tbm1JrTzr1PKR3nFJrV7shUV2SqAzLVFZnqgEx1ZW2mHlyuhg7iUTqJp1m1V+kinMXz7N4l9b32Lq2/SdfZARsqmVPpmXq9+wnmmv2iNSRT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912bKxwIBAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKogppc0FMS5DCMvVw8XoJ+LefjjM/pZuc9q5td/SvY5Z7Y5MdUWmOrB4+TS8+/hNpvogUx2Qqa6szdSDy9XQ8au99PbyeVbtk2efwvevL7J7l9Rv0/ssnmfVXqWL7Nqx62/SdfYbwaGSOYUw/t2X9B7rLieYa/aL1pBMTVsvU5uNefdTZeogHqWTeDrWmUb9vW8p37n1r998zn4jOFQypxDaeb6//PKhmbvfonfXmSqtl6nNWnn+e4yZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABXElNLmghiXIYTl6uFi9BNxbz8chrt0G3NqzWnn3qeUjnMKzWp3ZKorMtWBxcun4d3HbzLVB5nqgEx1ZW2mHlyuho5f7aW3l8+zap88+xS+f32R3bukfpveZ/E8q/YqXWTXjl1/k66z3wgOlcwphPHvvqT3WHc5wVyzX7SGZGraepnabMy7nypTB/EoncTTsc406u99S/nOrX/95nP2G8GhkjmF0M7z/eWXD83c/Ra9u85Uab1MbdbK899jzJSPBQIAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACoIKaUNhfEuAwhLFcPF6OfiHv74TDcpduYU2tOO/c+pXScU2hWuyNTXZGpDixePg3vPn6TqT7IVAdkqitrM/XgcjV0/Govvb18nlX75Nmn8P3ri+zeJfXb9D6L51m1V+kiu3bs+pt0nf1GcKhkTiGMf/clvce6ywnmmv2iNSRT09bL1GZj3v1UmTqIR+kkno51plF/71vKd2796zefs98IDpXMKYR2nu8vv3xo5u636N11pkrrZWqzVp7/HmOmfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoIKYUtpcEOMyhLBcPVyMfiLu7YfDcJdus76l25x2bu23dK9jVrsjU12RqQ4sXj4N7z5+k6k+yFQHZKorazP14HI1dPxqL729fJ5V++TZp/D964vs3iX12/Q+i+dZtVfpIrt27PqbdJ39RnCoZE4hjH/3Jb3HussJ5pr9ojUkU9PWy9RmY979VJk6iEfpJJ6OdaZRf+9byndu/es3n7PfCA6VzCmEdp7vL798aObut+jddaZK62Vqs1ae/x5jpnwsEAAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKACyxUAAEAFMaW0uSDGZQhhuXr4cwjhz5m9fwoh/FJwlpL6XnuX1v+cUtrPKfwNcyo9U693P/Zcp5hVr/cjU/VqW+o99llkqo+zzC1TLZ1lbpkqre+1d4uZKq2fS+/1s0opjfJPCOHdWPW99h77LFPMqqWft5XeU82q1/tp6e5l6vGeZew5tfbztnKWuWWqpbPMLVMt3U9LvVuc1dx7+1ggAABABZYrAACACsZcrv44Yn2vvUvrS3tvq5X76bX3NvXb6PV+Wrp7mdpdvUztrr6l3ttq5ectre+197bc/fS9t9XSz/Coej/4F1oAAADwMB8LBAAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFTwQ0nx7+LTtBd+zKr9W/hr2A+H2b1L6nvtXVr/Lfw9/DP9GrObr5TMqfRMvd79BHP9JaX0++w/sCJT09bLVFdnkakOzjK3TLV0lrllqrS+194tZqq0fka912aqaLnaCz+Gk3iaVXuVLrJrS+t77V1af5Ous/sOlcyp9Ey93v0Ec/2f7OIBmZq2Xqa6OotMdXCWuWWqpbPMLVOl9b32bjFTpfUz6r02Uz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLtzGn1px27n1K6Tin0Kx2R6a6IlMdkKmuyFQHZKorazP14HI1dBCP0kk8zaq9ShfhLJ5n9y6p77V3af1Nus4O2FDJnErP1OvdTzDX7BetIZmatl6mujqLTHVwlrllqqWzzC1TpfW99m4xU6X1M+q9NlM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Nwl25jTq057dz7lNJxTqFZ7Y5MdUWmOiBTXZGpDshUV9Zm6sHlauggHqWTeJpVe5Uuwlk8z+5dUt9r79L6m3SdHbChkjmVnqnXu59grtkvWkMyNW29THV1Fpnq4Cxzy1RLZ5lbpkrre+3dYqZK62fUe22mfCwQAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAUxpbS5IMZlCGG5ergY/UTc2w+H4S7dxpxac9q59yml45xCs9odmeqKTHVAproiUx2Qqa6szdSDy9XQQTxKJ/E0q/YqXYSzeJ7du6S+196l9TfpOjtgQyVzKj1Tr3c/wVyzX7SGZGraepnq6iwy1cFZ5papls4yt0yV1vfau8VMldbPqPfaTPlYIAAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFCB5QoAAKCCH0qK//DyH+Hy8kNW7ZNnIVx+yastrd+m95yUzCmE8e++pPfcyFQfZIoptJTv3PrXb/6R3fcxuPzyoZm797z9sJbuXqbWe4yZiimljX8wxrgMISxXDxfZ/0Z+s/1wmP0t3ea0c2u/pXsds9odmeqKTHVg8fJpePfxm0z1QaY6IFNdWZupB5eroeNXe+nt5fOs2ifPPoXvX19k9y6p36b3WTzPqr1KF9m1Y9ffpOvsN4JDJXMKYfy7L+k91l1OMNfsF60hmZq2XqY2G/Pup8rUQTxKJ/F0rDON+nvfUr5z61+/+Zz9RnCoZE4htPN8/6//yt7G3W/Ru+tMldbL1GatPP89xkz5f64AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACgAssVAABABZYrAACACixXAAAAFViuAAAAKrBcAQAAVBBTSpsLYlyGEJarh4vRT8S9/XAY7tJtzKk1p517n1I6zik0q92Rqa7IVAcWL5+Gdx+/yVQfZKoDMtWVtZl6cLkaOn61l95ePs+qffLsU/j+9UV275L6bXqfxfOs2qt0kV07dv1Nus5+IzhUMqcQxr/7kt5j3eUEc81+0RqSqWnrZWqzMe9+qkwdxKN0Ek/HOtOov/ct5Tu3/vWbz9lvBIdK5hRCO8/3l18+NHP3W/TuOlOl9TK1WSvPf48xUz4WCAAAUIHlCgAAoALLFQAAQAWWKwAAgAosVwAAABVYrgAAACqwXAEAAFRguQIAAKjAcgUAAFBBTCltLohxGUJYrh4uRj8R9/bDYbhLt1nf0m1OO7f2W7rXMavdkamuyFQHFi+fhncfv8lUH2SqAzLVlbWZenC5Gjp+tZfeXj7Pqn3y7FP4/vVFdu+S+m16n8XzrNqrdJFdO3b9TbrOfiM4VDKnEMa/+5LeY93lBHPNftEakqlp62VqszHvfqpMHcSjdBJPxzrTqL/3LeU7t/71m8/ZbwSHSuYUQjvP95dfPjRz91v07jpTpfUytVkrz3+PMVM+FggAAFCB5QoAAKACyxUAAEAFlisAAIAKLFcAAAAVWK4AAAAqsFwBAABUYLkCAACowHIFAABQgeUKAACggphS2lwQ4zKEsFw9XIx+Iu7th8Nwl25jTq057dz7lNJxTqFZ7Y5MdUWmOrB4+TS8+/hNpvogUx2Qqa6szdSDy9XQ8au99PbyeVbtk2efwvevL7J7l9Rv0/ssnmfVXqWL7Nqx62/SdfYbwaGSOYUw/t2X9B7rLieYa/aL1pBMTVsvU5uNefdTZeogHqWTeDrWmUb9vW8p37n1r998zn4jOFQypxDaeb6//PKhmbvfonfXmSqtl6nNWnn+e4yZ8rFAAACACixXAAAAFViuAAAAKrBcAQAAVGC5AgAAqMByBQAAUIHlCgAAoALLFQAAQAWWKwAAgApiSmlzQYzLEMJy9fDnEMKfM3v/FEL4peAsJfW99i6t/zmltJ9T+BvmVHqmXu9+7LlOMate70em6tW21Hvss8hUH2eZW6ZaOsvcMlVa32vvFjNVWj+X3utnlVIa5Z8Qwrux6nvtPfZZpphVSz9vK72nmlWv99PS3cvU4z3L2HNq7edt5Sxzy1RLZ5lbplq6n5Z6tziruff2sUAAAIAKLFcAAAAVjLlc/XHE+l57l9aX9t5WK/fTa+9t6rfR6/20dPcytbt6mdpdfUu9t9XKz1ta32vvbbn76Xtvq6Wf4VH1fvAvtAAAAOBhPhYIAABQgeUKAACgAssVAABABZYrAACACixXAAAAFfx/jO2AMuneKvUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x864 with 64 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(12, 12))\n",
"for i in range(H * W):\n",
" ax = fig.add_subplot(H, W, i + 1)\n",
" ax.imshow(mask[i].reshape(H, W))\n",
" ax.grid(color='k', linestyle='-', linewidth=1)\n",
" ax.set_xticks(torch.arange(0.5, W))\n",
" ax.set_yticks(torch.arange(0.5, H))\n",
" ax.set_xticklabels([])\n",
" ax.set_yticklabels([])\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "747678ef-18d0-4e13-969b-da389f7e3479",
"metadata": {},
"source": [
"And for the shifted case"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "01274104-c52a-4740-85bf-67363300322b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANYCAYAAAAolBclAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABB6klEQVR4nO3dwWpcWbYu6jmv8pTNTSSQqGroguE0zM6efUHCegAJ/AJ6hnioega9gEF6ABkbtnevDmqcjeG4k9cFLqpw1sHM07ixxWqsCs2pHCtiTa3vAzcChkdOzaE/FgMiHbmUkgAAAPh9/q9dHwAAAOApsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAE+Kml+I9He+W/v/hvVbUf/+O3dPLqWXXvj//xW9pPh1W1f0t/ra5trZ+yd2v99/T39M/yW65uvtYyp5TaZtUyp5Tmc/dbmOuvpZQ/Vf+FtT/kZ+V5+nmqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv2Pz//7/Tr1x+zylRr/dx6T5jX0Uzlln+K/fT18/L+3Yuq2r3ju/Tjy8vq3nvHd+kiX1bVXper6trW+il7t9bflpv0rXxtDljLnFJqm1XLnFKaz91vYa4fSymn1X9h7SAflbN8PtWZmubamtcpe88tUy1zaj1Ty5xSmv7uZ/S+LVNB9TK1Wa/vf08lUz0+96f8HXvz9nP68On7rDLVWj+33hPmdTRTPhYIAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQwHIFAAAQIJdSNhfkvEoprdYvTyY/Eff202H6Vr7mmlpz2rmPpZTTmkKz2h2Z6opMdUCmuiJTHTh59Sx9+PRdpvowmqkHl6uh09fPy/t3L6pq947v0o8vL6t77x3fpYt8WVV7Xa6qa1vrp+zdWn9bbqofWkMtc0qpbVYtc0ppPne/hblWP7SGDvJROcvnU52paa6teZ2y99wy1TKn1jO1zCml6e9+Ru/bMhVUL1Ob9fr+91Qy1eNzf8rfsTdvP1cvV0NTZqq1fm69J8zraKZ8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV+eTH4i7u2nw+pvvjennRv9lu4xZrU7MtUVmeqATHVFpjogU10ZzdSDy9XQQT4qZ/m8qva6XKWLfFndu6W+196t9bflpjpgQy1zaj1Tr3e/hblWP7SGZGq79TLV1VlkqoOzLC1TczrL0jLVWt9r7zlmqrV+Qb1HM+VjgQAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAFyKWVzQc6rlNJq/fJk8hNxbz8dpm/la66pNaed+1hKOa0pNKvdkamuyFQHZKorMtUBmerKaKYeXK6GDvJROcvnVbXX5Spd5Mvq3i31vfZurb8tN9UBG2qZU+uZer37Lcy1+qE1JFPbrZeprs4iUx2cZWmZmtNZlpap1vpee88xU631C+o9mikfCwQAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAiQSymbC3JepZRW65cnk5+Ie/vpMH0rX3NNrTnt3MdSymlNoVntjkx1RaY6IFNdkakOyFRXRjP14HI1dJCPylk+r6q9LlfpIl9W926p77V3a/1tuakO2FDLnFrP1Ovdb2Gu1Q+tIZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uz5WCAAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh9Xf0m1OOzf6Ld1jzGp3ZKorMtUBmeqKTHVAproymqkHl6uhg3xUzvJ5Ve11uUoX+bK6d0t9r71b62/LTXXAhlrm1HqmXu9+C3OtfmgNydR262Wqq7PIVAdnWVqm5nSWpWWqtb7X3nPMVGv9gnqPZsrHAgEAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAALkUsrmgpxXKaXV+uXJ5Cfi3n46TN/K11xTa04797GUclpTaFa7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfW3dJvTzo1+S/cYs9odmeqKTHVAproiUx2Qqa6MZurB5WroIB+Vs3xeVXtdrtJFvqzu3VLfa+/W+ttyUx2woZY5tZ6p17vfwlyrH1pDMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmfKxQAAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgAC5lLK5IOdVSmm1fvlLSukvlb3/mFL6teEsLfW99m6t/6WUsl9T+Dvm1HqmXu9+6rluY1a93o9MxdXOqffUZ5GpPs6ytEzN6SxLy1Rrfa+955ip1vql9B6fVSllkj8ppQ9T1ffae+qzbGNWc/p559J7W7Pq9X7mdPcy9XTPMvWc5vbzzuUsS8vUnM6ytEzN6X7m1HuOs1p6bx8LBAAACGC5AgAACDDlcvXnCet77d1a39r7seZyP732fkz9Y/R6P3O6e5naXb1M7a5+Tr0fay4/b2t9r70fy91vv/djzelneFK9H/wHLQAAAHiYjwUCAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAE+Kml+I9He+W/v/hvVbUf/+O3dPLqWXXvj//xW9pPh1W1f0t/ra5trZ+yd2v99/T39M/yW65uvtYyp5TaZtUyp5Tmc/dbmOuvpZQ/Vf+FtT/kZ+V5+nmqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv2Pz//7/Tr1x+zylRr/dx6T5jX0UzlUkp1k9PXz8v7dy+qaveO79KPLy+re+8d36WLfFlVe12uqmtb66fs3Vp/W27St/K1OWAtc0qpbVYtc0ppPne/hbl+LKWcVv+FtYN8VM7y+VRnappra16n7D23TLXMqfVMLXNKafq7n9H7tkwF1cvUZr2+/z2VTPX43J/yd+zN28/pw6fvs8pUa/3cek+Y19FM+VggAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAgFxK2VyQ8yqltFq/PJn8RNzbT4fpW/maa2rNaec+llJOawrNandkqisy1QGZ6opMdeDk1bP04dN3merDaKYeXK6GTl8/L+/fvaiq3Tu+Sz++vKzuvXd8ly7yZVXtdbmqrm2tn7J3a/1tual+aA21zCmltlm1zCml+dz9FuZa/dAaOshH5SyfT3Wmprm25nXK3nPLVMucWs/UMqeUpr/7Gb1vy1RQvUxt1uv731PJVI/P/Sl/x968/Vy9XA1NmanW+rn1njCvo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAP7UU/4//+L/T2//n/62svmuo/f/ridE2p5TaZmVOPZkyr94L4szp7s1qszndvfftf21Ody9TT9NUvzP/o/x/jzkOG2w7r7mUsvGv5ZxXKaXV+uVJw3+R32k/HVZ/87057dzot3SPMavdkamuyFQHZKorMtUBmerKaKYeXK6GDvJROcvnVbXX5Spd5Mvq3i31vfZurb8tN9UBG2qZU+uZer37Lcy1+qE1JFPbrZeprs4iUx2cZWmZmtNZlpap1vpee88xU631C+o9min/zxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh+lb+Zpras1p5z6WUk5rCs1qd2SqKzLVAZnqikx1QKa6MpqpB5eroYN8VM7yeVXtdblKF/myundLfa+9W+tvy011wIZa5tR6pl7vfgtzrX5oDcnUdutlqquzyFQHZ1lapuZ0lqVlqrW+195zzFRr/YJ6j2bKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+Oqz+lm5z2rnRb+keY1a7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfpWvuaaWnPauY+llNOaQrPaHZnqikx1QKa6IlMdkKmujGbqweVq6CAflbN8XlV7Xa7SRb6s7t1S32vv1vrbclMdsKGWObWeqde738Jcqx9aQzK13XqZ6uosMtXBWZaWqTmdZWmZaq3vtfccM9Vav6Deo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDqu/pducdm70W7rHmNXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10mL6Vr7mm1px27mMp5bSm0Kx2R6a6IlMdkKmuyFQHZKoro5l6cLkaOshH5SyfV9Vel6t0kS+re7fU99q7tf623FQHbKhlTq1n6vXutzDX6ofWkExtt16mujqLTHVwlqVlak5nWVqmWut77T3HTLXWL6j3aKZ8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV/+klL6S2XvP6aUfm04S0t9r71b638ppezXFP6OObWeqde7n3qu25hVr/cjU3G1c+o99Vlkqo+zLC1TczrL0jLVWt9r7zlmqrV+Kb3HZ1VKmeRPSunDVPW99p76LNuY1Zx+3rn03taser2fOd29TD3ds0w9p7n9vHM5y9IyNaezLC1Tc7qfOfWe46yW3tvHAgEAAAJYrgAAAAJMuVz9ecL6Xnu31rf2fqy53E+vvR9T/xi93s+c7l6mdlcvU7urn1Pvx5rLz9ta32vvx3L32+/9WHP6GZ5U7wf/QQsAAAAe5mOBAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAAX5qKf5Dflaep5+rav+W/pr202F175b6Xnu31n9Pf0//LL/l6uZrLXNqPVOvd7+Fuf5aSvlT9V9Yk6nt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezVTTcvU8/ZzO8nlV7XW5qq5tre+1d2v9bbmp7jvUMqfWM/V691uY639WFw/I1HbrZaqrs8hUB2dZWqbmdJalZaq1vtfec8xUa/2Ceo9myscCAQAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAuRSyuaCnFcppdX65cnkJ+LefjpM38rXXFNrTjv3sZRyWlNoVrsjU12RqQ7IVFdkqgMy1ZXRTD24XA0d5KNyls+raq/LVbrIl9W9W+p77d1af1tuqgM21DKn1jP1evdbmGv1Q2tIprZbL1NdnUWmOjjL0jI1p7MsLVOt9b32nmOmWusX1Hs0Uz4WCAAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEOCnluJ/e/WP9O7dv1fV7h2n9O5/1dX+Vz0xWuaUUtuszKkvLXNtzeuUvZdmTndvVpvN6e69b/9rc7p7mXqapvqdefP2H487EP/StvOaSykb/2LOeZVSWq1fnlT/F/nd9tNh+la+5ppac9q5j6WU05pCs9odmeqKTHVAproiUx04efUsffj0Xab6MJqpB5erodPXz8v7dy+qaveO79KPLy+re+8d36WLfFlVe12uqmtb66fs3Vp/W26qH1pDLXNKqW1WLXNKaT53v4W5Vj+0hg7yUTnL51OdqWmurXmdsvfcMtUyp9Yztcwppenvfkbv2zIVVC9Tm/X6/vdUMtXjc3/K37E3bz9XL1dDU2aqtX5uvSfM62im/D9XAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAASxXAAAAAXIpZXNBzquU0mr98mTyE3FvPx1Wf/O9Oe3c6Ld0jzGr3ZGprshUB2SqKzLVgZNXz9KHT99lqg+jmXpwuRo6ff28vH/3oqp27/gu/fjysrr33vFdusiXVbXX5aq6trV+yt6t9bflpvqhNdQyp5TaZtUyp5Tmc/dbmGv1Q2voIB+Vs3w+1Zma5tqa1yl7zy1TLXNqPVPLnFKa/u5n9L4tU0H1MrVZr+9/TyVTPT73p/wde/P2c/VyNTRlplrr59Z7wryOZsrHAgEAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAALkUsrmgpxXKaXV+uXJ5Cfi3n46TN/K11xTa04797GUclpTaFa7I1NdkakOyFRXZKoDJ6+epQ+fvstUH0Yz9eByNXT6+nl5/+5FVe3e8V368eVlde+947t0kS+raq/LVXVta/2UvVvrb8tN9UNrqGVOKbXNqmVOKc3n7rcw1+qH1tBBPipn+XyqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv25u3n6uVqaMpMtdbPrfeEeR3NlI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABMillM0FOa9SSqv1y5PJT8S9/XRY/c335rRzo9/SPcasdkemuiJTHZCprshUB05ePUsfPn2XqT6MZurB5Wro9PXz8v7di6raveO79OPLy+ree8d36SJfVtVel6vq2tb6KXu31t+Wm+qH1lDLnFJqm1XLnFKaz91vYa7VD62hg3xUzvL5VGdqmmtrXqfsPbdMtcyp9Uwtc0pp+ruf0fu2TAXVy9Rmvb7/PZVM9fjcn/J37M3bz9XL1dCUmWqtn1vvCfM6mikfCwQAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAhguQIAAAiQSymbC3JepZRW65cnk5+Ie/vpMH0rX3NNrTnt3MdSymlNoVntjkx1RaY6IFNdkakOyFRXRjP14HI1dJCPylk+r6q9LlfpIl9W926p77V3a/1tuakO2FDLnFrP1Ovdb2Gu1Q+tIZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uz5WCAAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh+lb+Zpras1p5z6WUk5rCs1qd2SqKzLVAZnqikx1QKa6MpqpB5eroYN8VM7yeVXtdblKF/myundLfa+9W+tvy011wIZa5tR6pl7vfgtzrX5oDcnUdutlqquzyFQHZ1lapuZ0lqVlqrW+195zzFRr/YJ6j2bKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlLymlv1T2/mNK6deGs7TU99q7tf6XUsp+TeHvmFPrmXq9+6nnuo1Z9Xo/MhVXO6feU59Fpvo4y9IyNaezLC1TrfW99p5jplrrl9J7fFallEn+pJQ+TFXfa++pz7KNWc3p551L723Nqtf7mdPdy9TTPcvUc5rbzzuXsywtU3M6y9IyNaf7mVPvOc5q6b19LBAAACCA5QoAACDAlMvVnyes77V3a31r78eay/302vsx9Y/R6/3M6e5lanf1MrW7+jn1fqy5/Lyt9b32fix3v/3ejzWnn+FJ9X7wH7QAAADgYT4WCAAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEOCnluI/5Gflefq5qvZv6a9pPx1W926p77V3a/339Pf0z/Jbrm6+1jKn1jP1evdbmOuvpZQ/Vf+FNZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uw1LVfP08/pLJ9X1V6Xq+ra1vpee7fW35ab6r5DLXNqPVOvd7+Fuf5ndfGATG23Xqa6OotMdXCWpWVqTmdZWqZa63vtPcdMtdYvqPdopnwsEAAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIIDlCgAAIEAupWwuyHmVUlqtX55MfiLu7afD9K18zTW15rRzH0sppzWFZrU7MtUVmeqATHVFpjogU10ZzdSDy9XQQT4qZ/m8qva6XKWLfFndu6W+196t9bflpjpgQy1zaj1Tr3e/hblWP7SGZGq79TLV1VlkqoOzLC1TczrL0jLVWt9r7zlmqrV+Qb1HM+VjgQAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAFyKWVzQc6rlNJq/fJk8hNxbz8dVn9Ltznt3Oi3dI8xq92Rqa7IVAdkqisy1YGTV8/Sh0/fZaoPo5l6cLkaOn39vLx/96Kqdu/4Lv348rK6997xXbrIl1W11+Wqura1fsrerfW35ab6oTXUMqeU2mbVMqeU5nP3W5hr9UNr6CAflbN8PtWZmubamtcpe88tUy1zaj1Ty5xSmv7uZ/S+LVNB9TK1Wa/vf08lUz0+96f8HXvz9nP1cjU0ZaZa6+fWe8K8jmbKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+OkzfytdcU2tOO/exlHJaU2hWuyNTXZGpDshUV2SqAyevnqUPn77LVB9GM/XgcjV0+vp5ef/uRVXt3vFd+vHlZXXvveO7dJEvq2qvy1V1bWv9lL1b62/LTfVDa6hlTim1zaplTinN5+63MNfqh9bQQT4qZ/l8qjM1zbU1r1P2nlumWubUeqaWOaU0/d3P6H1bpoLqZWqzXt//nkqmenzuT/k79ubt5+rlamjKTLXWz633hHkdzZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10mL6Vr7mm1px27mMp5bSm0Kx2R6a6IlMdkKmuyFQHTl49Sx8+fZepPoxm6sHlauj09fPy/t2Lqtq947v048vL6t57x3fpIl9W1V6Xq+ra1vope7fW35ab6ofWUMucUmqbVcucUprP3W9hrtUPraGDfFTO8vlUZ2qaa2tep+w9t0y1zKn1TC1zSmn6u5/R+7ZMBdXL1Ga9vv89lUz1+Nyf8nfszdvP1cvV0JSZaq2fW+8J8zqaKR8LBAAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACJBLKZsLcl6llFbrlyeTn4h7++mw+pvvzWnnRr+le4xZ7Y5MdUWmOiBTXZGpDpy8epY+fPouU30YzdSDy9XQ6evn5f27F1W1e8d36ceXl9W9947v0kW+rKq9LlfVta31U/Zurb8tN9UPraGWOaXUNquWOaU0n7vfwlyrH1pDB/monOXzqc7UNNfWvE7Ze26ZaplT65la5pTS9Hc/o/dtmQqql6nNen3/eyqZ6vG5P+Xv2Ju3n6uXq6EpM9VaP7feE+Z1NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfpWvuaaWnPauY+llNOaQrPaHZnqikx1QKa6IlMdkKmujGbqweVq6CAflbN8XlV7Xa7SRb6s7t1S32vv1vrbclMdsKGWObWeqde738Jcqx9aQzK13XqZ6uosMtXBWZaWqTmdZWmZaq3vtfccM9Vav6Deo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDqu/pducdm70W7rHmNXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9ctfUkp/qez9x5TSrw1naanvtXdr/S+llP2awt8xp9Yz9Xr3U891G7Pq9X5kKq52Tr2nPotM9XGWpWVqTmdZWqZa63vtPcdMtdYvpff4rEopk/xJKX2Yqr7X3lOfZRuzmtPPO5fe25pVr/czp7uXqad7lqnnNLefdy5nWVqm5nSWpWVqTvczp95znNXSe/tYIAAAQADLFQAAQIApl6s/T1jfa+/W+tbejzWX++m192PqH6PX+5nT3cvU7uplanf1c+r9WHP5eVvre+39WO5++70fa04/w5Pq/eA/aAEAAMDDfCwQAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAgwE8txX/Iz8rz9HNV7d/SX9N+Oqzu3VLfa+/W+u/p7+mf5bdc3XytZU6tZ+r17rcw119LKX+q/gtrMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmWparp6nn9NZPq+qvS5X1bWt9b32bq2/LTfVfYda5tR6pl7vfgtz/c/q4gGZ2m69THV1Fpnq4CxLy9SczrK0TLXW99p7jplqrV9Q79FM+VggAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAAMsVAABAgFxK2VyQ8yqltFq/PJn8RNzbT4fpW/maa2rNaec+llJOawrNandkqisy1QGZ6opMdUCmujKaqQeXq6GDfFTO8nlV7XW5Shf5srp3S32vvVvrb8tNdcCGWubUeqZe734Lc61+aA3J1HbrZaqrs8hUB2dZWqbmdJalZaq1vtfec8xUa/2Ceo9myscCAQAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAliuAAAAAvzUUvxvr/6R3r3796raveOU3v2vutr/qidGy5xSapuVOfWlZa6teZ2y99LM6e7NarM53b337X9tTncvU0/TVL8zb97+43EH4l/adl5zKWXjX8w5r1JKq/XLk+r/Ir/bfjqs/pZuc9q50W/pHmNWuyNTXZGpDshUV2SqAyevnqUPn77LVB9GM/XgcjV0+vp5ef/uRVXt3vFd+vHlZXXvveO7dJEvq2qvy1V1bWv9lL1b62/LTfVDa6hlTim1zaplTinN5+63MNfqh9bQQT4qZ/l8qjM1zbU1r1P2nlumWubUeqaWOaU0/d3P6H1bpoLqZWqzXt//nkqmenzuT/k79ubt5+rlamjKTLXWz633hHkdzZT/5woAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV+eTH4i7u2nw/StfM01tea0cx9LKac1hWa1OzLVFZnqgEx1RaY6cPLqWfrw6btM9WE0Uw8uV0Onr5+X9+9eVNXuHd+lH19eVvfeO75LF/myqva6XFXXttZP2bu1/rbcVD+0hlrmlFLbrFrmlNJ87n4Lc61+aA0d5KNyls+nOlPTXFvzOmXvuWWqZU6tZ2qZU0rT3/2M3rdlKqhepjbr9f3vqWSqx+f+lL9jb95+rl6uhqbMVGv93HpPmNfRTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRavzyZ/ETc20+H1d98b047N/ot3WPMandkqisy1QGZ6opMdeDk1bP04dN3merDaKYeXK6GTl8/L+/fvaiq3Tu+Sz++vKzuvXd8ly7yZVXtdbmqrm2tn7J3a/1tual+aA21zCmltlm1zCml+dz9FuZa/dAaOshH5SyfT3Wmprm25nXK3nPLVMucWs/UMqeUpr/7Gb1vy1RQvUxt1uv731PJVI/P/Sl/x968/Vy9XA1NmanW+rn1njCvo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDtO38jXX1JrTzn0spZzWFJrV7shUV2SqAzLVFZnqwMmrZ+nDp+8y1YfRTD24XA2dvn5e3r97UVW7d3yXfnx5Wd177/guXeTLqtrrclVd21o/Ze/W+ttyU/3QGmqZU0pts2qZU0rzufstzLX6oTV0kI/KWT6f6kxNc23N65S955apljm1nqllTilNf/czet+WqaB6mdqs1/e/p5KpHp/7U/6OvXn7uXq5GpoyU631c+s9YV5HM+VjgQAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAEsVwAAAAFyKWVzQc6rlNJq/fJk8hNxbz8dVn/zvTnt3Oi3dI8xq92Rqa7IVAdkqisy1QGZ6spoph5croYO8lE5y+dVtdflKl3ky+reLfW99m6tvy031QEbaplT65l6vfstzLX6oTUkU9utl6muziJTHZxlaZma01mWlqnW+l57zzFTrfUL6j2aKR8LBAAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACJBLKZsLcl6llFbrlyeTn4h7++kwfStfc02tOe3cx1LKaU2hWe2OTHVFpjogU12RqQ7IVFdGM/XgcjV0kI/KWT6vqr0uV+kiX1b3bqnvtXdr/W25qQ7YUMucWs/U691vYa7VD60hmdpuvUx1dRaZ6uAsS8vUnM6ytEy11vfae46Zaq1fUO/RTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRav/wlpfSXyt5/TCn92nCWlvpee7fW/1JK2a8p/B1zaj1Tr3c/9Vy3Mate70em4mrn1Hvqs8hUH2dZWqbmdJalZaq1vtfec8xUa/1Seo/PqpQyyZ+U0oep6nvtPfVZtjGrOf28c+m9rVn1ej9zunuZerpnmXpOc/t553KWpWVqTmdZWqbmdD9z6j3HWS29t48FAgAABLBcAQAABJhyufrzhPW99m6tb+39WHO5n157P6b+MXq9nzndvUztrl6mdlc/p96PNZeft7W+196P5e633/ux5vQzPKneD/6DFgAAADzMxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC/NRS/If8rDxPP1fV/i39Ne2nw+reLfW99m6t/57+nv5ZfsvVzdda5tR6pl7vfgtz/bWU8qfqv7AmU9utl6muziJTHZxlaZma01mWlqnW+l57zzFTrfUL6j2aqabl6nn6OZ3l86ra63JVXdta32vv1vrbclPdd6hlTq1n6vXutzDX/6wuHpCp7dbLVFdnkakOzrK0TM3pLEvLVGt9r73nmKnW+gX1Hs2UjwUCAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEsFwBAAAEyKWUzQU5r1JKq/XLk8lPxL39dJi+la+5ptacdu5jKeW0ptCsdkemuiJTHZCprshUB2SqK6OZenC5GjrIR+Usn1fVXperdJEvq3u31Pfau7X+ttxUB2yoZU6tZ+r17rcw1+qH1pBMbbdepro6i0x1cJalZWpOZ1laplrre+09x0y11i+o92imfCwQAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAggOUKAAAgwE8txf/26h/p3bt/r6rdO07p3f+qq/2vemK0zCmltlmZU19a5tqa1yl7L82c7t6sNpvT3Xvf/tfmdPcy9TRN9Tvz5u0/Hncg/qVt5zWXUjb+xZzzKqW0Wr88qf4v8rvtp8P0rXzNNbXmtHMfSymnNYVmtTsy1RWZ6oBMdUWmOnDy6ln68Om7TPVhNFMPLldDp6+fl/fvXlTV7h3fpR9fXlb33ju+Sxf5sqr2ulxV17bWT9m7tf623FQ/tIZa5pRS26xa5pTSfO5+C3OtfmgNHeSjcpbPpzpT01xb8zpl77llqmVOrWdqmVNK09/9jN63ZSqoXqY26/X976lkqsfn/pS/Y2/efq5eroamzFRr/dx6T5jX0Uz5f64AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+Oqz+5ntz2rnRb+keY1a7I1NdkakOyFRXZKoDJ6+epQ+fvstUH0Yz9eByNXT6+nl5/+5FVe3e8V368eVlde+947t0kS+raq/LVXVta/2UvVvrb8tN9UNrqGVOKbXNqmVOKc3n7rcw1+qH1tBBPipn+XyqMzXNtTWvU/aeW6Za5tR6ppY5pTT93c/ofVumguplarNe3/+eSqZ6fO5P+Tv25u3n6uVqaMpMtdbPrfeEeR3NlI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABMillM0FOa9SSqv1y5PJT8S9/XSYvpWvuabWnHbuYynltKbQrHZHproiUx2Qqa7IVAdOXj1LHz59l6k+jGbqweVq6PT18/L+3Yuq2r3ju/Tjy8vq3nvHd+kiX1bVXper6trW+il7t9bflpvqh9ZQy5xSaptVy5xSms/db2Gu1Q+toYN8VM7y+VRnappra16n7D23TLXMqfVMLXNKafq7n9H7tkwF1cvUZr2+/z2VTPX43J/yd+zN28/Vy9XQlJlqrZ9b7wnzOpopHwsEAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIkEspmwtyXqWUVuuXJ5OfiHv76bD6m+/NaedGv6V7jFntjkx1RaY6IFNdkakOnLx6lj58+i5TfRjN1IPL1dDp6+fl/bsXVbV7x3fpx5eX1b33ju/SRb6sqr0uV9W1rfVT9m6tvy031Q+toZY5pdQ2q5Y5pTSfu9/CXKsfWkMH+aic5fOpztQ019a8Ttl7bplqmVPrmVrmlNL0dz+j922ZCqqXqc16ff97Kpnq8bk/5e/Ym7efq5eroSkz1Vo/t94T5nU0Uz4WCAAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAEMByBQAAECCXUjYX5LxKKa3WL08mPxH39tNh+la+5ppac9q5j6WU05pCs9odmeqKTHVAproiUx2Qqa6MZurB5WroIB+Vs3xeVXtdrtJFvqzu3VLfa+/W+ttyUx2woZY5tZ6p17vfwlyrH1pDMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmfKxQAAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgAC5lLK5IOdVSmm1fnky+Ym4t58Oq7+l25x2bvRbuseY1e7IVFdkqgMy1RWZ6oBMdWU0Uw8uV0MH+aic5fOq2utylS7yZXXvlvpee7fW35ab6oANtcyp9Uy93v0W5lr90BqSqe3Wy1RXZ5GpDs6ytEzN6SxLy1Rrfa+955ip1voF9R7NlI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABMillM0FOa9SSqv1y19SSn+p7P3HlNKvDWdpqe+1d2v9L6WU/ZrC3zGn1jP1evdTz3Ubs+r1fmQqrnZOvac+i0z1cZalZWpOZ1laplrre+09x0y11i+l9/isSimT/EkpfZiqvtfeU59lG7Oa0887l97bmlWv9zOnu5epp3uWqec0t593LmdZWqbmdJalZWpO9zOn3nOc1dJ7+1ggAABAAMsVAABAgCmXqz9PWN9r79b61t6PNZf76bX3Y+ofo9f7mdPdy9Tu6mVqd/Vz6v1Yc/l5W+t77f1Y7n77vR9rTj/Dk+r94D9oAQAAwMN8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACDATy3Ff8jPyvP0c1Xt39Jf0346rO7dUt9r79b67+nv6Z/lt1zdfK1lTq1n6vXutzDXX0spf6r+C2sytd16merqLDLVwVmWlqk5nWVpmWqt77X3HDPVWr+g3qOZalqunqef01k+r6q9LlfVta31vfZurb8tN9V9h1rm1HqmXu9+C3P9z+riAZnabr1MdXUWmergLEvL1JzOsrRMtdb32nuOmWqtX1Dv0Uz5WCAAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAEAAyxUAAECAXErZXJDzKqW0Wr88mfxE3NtPh+lb+Zpras1p5z6WUk5rCs1qd2SqKzLVAZnqikx1QKa6MpqpB5eroYN8VM7yeVXtdblKF/myundLfa+9W+tvy011wIZa5tR6pl7vfgtzrX5oDcnUdutlqquzyFQHZ1lapuZ0lqVlqrW+195zzFRr/YJ6j2bKxwIBAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAACWK4AAAAC5FLK5oKcVyml1frlyeQn4t5+Oqz+lm5z2rnRb+keY1a7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfpWvuaaWnPauY+llNOaQrPaHZnqikx1QKa6IlMdkKmujGbqweVq6CAflbN8XlV7Xa7SRb6s7t1S32vv1vrbclMdsKGWObWeqde738Jcqx9aQzK13XqZ6uosMtXBWZaWqTmdZWmZaq3vtfccM9Vav6Deo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX55MvmJuLefDqu/pducdm70W7rHmNXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10mL6Vr7mm1px27mMp5bSm0Kx2R6a6IlMdkKmuyFQHZKoro5l6cLkaOshH5SyfV9Vel6t0kS+re7fU99q7tf623FQHbKhlTq1n6vXutzDX6ofWkExtt16mujqLTHVwlqVlak5nWVqmWut77T3HTLXWL6j3aKZ8LBAAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACCA5QoAACBALqVsLsh5lVJarV+eTH4i7u2nw/StfM01tea0cx9LKac1hWa1OzLVFZnqgEx1RaY6cPLqWfrw6btM9WE0Uw8uV0Onr5+X9+9eVNXuHd+lH19eVvfeO75LF/myqva6XFXXttZP2bu1/rbcVD+0hlrmlFLbrFrmlNJ87n4Lc61+aA0d5KNyls+nOlPTXFvzOmXvuWWqZU6tZ2qZU0rT3/2M3rdlKqhepjbr9f3vqWSqx+f+lL9jb95+rl6uhqbMVGv93HpPmNfRTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRavzyZ/ETc20+H1d98b047N/ot3WPMandkqisy1QGZ6opMdeDk1bP04dN3merDaKYeXK6GTl8/L+/fvaiq3Tu+Sz++vKzuvXd8ly7yZVXtdbmqrm2tn7J3a/1tual+aA21zCmltlm1zCml+dz9FuZa/dAaOshH5SyfT3Wmprm25nXK3nPLVMucWs/UMqeUpr/7Gb1vy1RQvUxt1uv731PJVI/P/Sl/x968/Vy9XA1NmanW+rn1njCvo5nysUAAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAlisAAIAAuZSyuSDnVUpptX75S0rpL5W9/5hS+rXhLC31vfZurf+llLJfU/g75tR6pl7vfuq5bmNWvd6PTMXVzqn31GeRqT7OsrRMzeksS8tUa32vveeYqdb6pfQen1UpZZI/KaUPU9X32nvqs2xjVnP6eefSe1uz6vV+5nT3MvV0zzL1nOb2887lLEvL1JzOsrRMzel+5tR7jrNaem8fCwQAAAhguQIAAAgw5XL15wnre+3dWt/a+7Hmcj+99n5M/WP0ej9zunuZ2l29TO2ufk69H2suP29rfa+9H8vdb7/3Y83pZ3hSvR/8By0AAAB4mI8FAgAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABLBcAQAABPippfgP+Vl5nn6uqv1b+mvaT4fVvVvqe+3dWv89/T39s/yWq5uvtcyp9Uy93v0W5vprKeVP1X9hTaa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFNNy9Xz9HM6y+dVtdflqrq2tb7X3q31t+Wmuu9Qy5xaz9Tr3W9hrv9ZXTwgU9utl6muziJTHZxlaZma01mWlqnW+l57zzFTrfUL6j2aKR8LBAAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACGC5AgAACJBLKZsLcl6llFbrlyeTn4h7++kwfStfc02tOe3cx1LKaU2hWe2OTHVFpjogU12RqQ7IVFdGM/XgcjV0kI/KWT6vqr0uV+kiX1b3bqnvtXdr/W25qQ7YUMucWs/U691vYa7VD60hmdpuvUx1dRaZ6uAsS8vUnM6ytEy11vfae46Zaq1fUO/RTPlYIAAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQADLFQAAQIBcStlckPMqpbRavzyZ/ETc20+H6Vv5mmtqzWnnPpZSTmsKzWp3ZKorMtUBmeqKTHVAproymqkHl6uhg3xUzvJ5Ve11uUoX+bK6d0t9r71b62/LTXXAhlrm1HqmXu9+C3OtfmgNydR262Wqq7PIVAdnWVqm5nSWpWWqtb7X3nPMVGv9gnqPZsrHAgEAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAAJYrgAAAALkUsrmgpxXKaXV+uXJ5Cfi3n46TN/K11xTa04797GUclpTaFa7I1NdkakOyFRXZKoDMtWV0Uw9uFwNHeSjcpbPq2qvy1W6yJfVvVvqe+3dWn9bbqoDNtQyp9Yz9Xr3W5hr9UNrSKa2Wy9TXZ1Fpjo4y9IyNaezLC1TrfW99p5jplrrF9R7NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9PJj8R9/bTYfW3dJvTzo1+S/cYs9odmeqKTHVAproiUx2Qqa6MZurB5WroIB+Vs3xeVXtdrtJFvqzu3VLfa+/W+ttyUx2woZY5tZ6p17vfwlyrH1pDMrXdepnq6iwy1cFZlpapOZ1laZlqre+19xwz1Vq/oN6jmfKxQAAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgACWKwAAgAC5lLK5IOdVSmm1fnky+Ym4t58O07fyNdfUmtPOfSylnNYUmtXuyFRXZKoDMtUVmeqATHVlNFMPLldDB/monOXzqtrrcpUu8mV175b6Xnu31t+Wm+qADbXMqfVMvd79FuZa/dAakqnt1stUV2eRqQ7OsrRMzeksS8tUa32vveeYqdb6BfUezZSPBQIAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAASwXAEAAATIpZTNBTmvUkqr9cuTyU/Evf10WP0t3ea0c6Pf0j3GrHZHproiUx2Qqa7IVAdOXj1LHz59l6k+jGbqweVq6PT18/L+3Yuq2r3ju/Tjy8vq3nvHd+kiX1bVXper6trW+il7t9bflpvqh9ZQy5xSaptVy5xSms/db2Gu1Q+toYN8VM7y+VRnappra16n7D23TLXMqfVMLXNKafq7n9H7tkwF1cvUZr2+/z2VTPX43J/yd+zN28/Vy9XQlJlqrZ9b7wnzOpopHwsEAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIYLkCAAAIkEspmwtyXqWUVuuXJ5OfiHv76TB9K19zTa057dzHUsppTaFZ7Y5MdUWmOiBTXZGpDpy8epY+fPouU30YzdSDy9XQ6evn5f27F1W1e8d36ceXl9W9947v0kW+rKq9LlfVta31U/Zurb8tN9UPraGWOaXUNquWOaU0n7vfwlyrH1pDB/monOXzqc7UNNfWvE7Ze26ZaplT65la5pTS9Hc/o/dtmQqql6nNen3/eyqZ6vG5P+Xv2Ju3n6uXq6EpM9VaP7feE+Z1NFM+FggAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABDAcgUAABAgl1I2F+S8Simt1i9/SSn9pbL3H1NKvzacpaW+196t9b+UUvZrCn/HnFrP1OvdTz3Xbcyq1/uRqbjaOfWe+iwy1cdZlpapOZ1laZlqre+19xwz1Vq/lN7jsyqlTPInpfRhqvpee099lm3Mak4/71x6b2tWvd7PnO5epp7uWaae09x+3rmcZWmZmtNZlpapOd3PnHrPcVZL7+1jgQAAAAEsVwAAAAGmXK7+PGF9r71b61t7P9Zc7qfX3o+pf4xe72dOdy9Tu6uXqd3Vz6n3Y83l522t77X3Y7n77fd+rDn9DE+q94P/oAUAAAAP87FAAACAAJYrAACAAJYrAACAAJYrAACAAJYrAACAAP8Hs7VwOxhjYI0AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x864 with 64 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(12, 12))\n",
"for i in range(H * W):\n",
" ax = fig.add_subplot(H, W, i + 1)\n",
" ax.imshow(mask_shifted[i].reshape(H, W))\n",
" ax.grid(color='k', linestyle='-', linewidth=1)\n",
" ax.set_xticks(torch.arange(0.5, W))\n",
" ax.set_yticks(torch.arange(0.5, H))\n",
" ax.set_xticklabels([])\n",
" ax.set_yticklabels([])\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "dd27ef92-1ba7-405a-9545-251f94f29461",
"metadata": {},
"source": [
"We can see that the self-attention maps correspond to the images in the paper (shown in the top of the notebook), illustrating that indeed a custom sparsity pattern is enough to reproduce Swin Transformer without having to ressort to implementing custom code.\n",
"\n",
"Plus, it is trivial to extend Swin Transformer with other attention patterns (such as local 2d, axial and more, see [the 2d attetnion patterns notebook](https://github.com/fairinternal/xformers/blob/main/docs/source/2d_attention_patterns.ipynb) for more examples."
]
},
{
"cell_type": "markdown",
"id": "699fd7bc-377b-4786-8dc7-732619ddb89e",
"metadata": {},
"source": [
"## Using Swin Transformers as a sparse Transformer in your model\n",
"\n",
"Now that we know that we can represent a Swin Transformer as a particular instantiation of a sparse Transformer, let's use xformers efficient sparse kernels to see\n",
"what type of speed / memory trade-offs we get by casting a Swin Transformer as a sparse Transformer.\n",
"\n",
"To facilitate benchmarking and memory profiling, let's define a function that takes a generic callable and executes it, measuring the execution time and the GPU memory"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b072ae40-9bf3-4ab8-9717-acf2e8ffe981",
"metadata": {},
"outputs": [],
"source": [
"def profile_model(fn, min_run_time=2):\n",
" torch.cuda.reset_peak_memory_stats()\n",
" torch.cuda.synchronize()\n",
" res = benchmark.Timer(\n",
" stmt='fn()',\n",
" globals={\"fn\": fn},\n",
" label=\"profile\",\n",
" sub_label=\"\",\n",
" description=\"\"\n",
" ).blocked_autorange(min_run_time=min_run_time)\n",
" torch.cuda.synchronize()\n",
" memory = torch.cuda.max_memory_allocated() / 2 ** 20\n",
" memory = f\"Memory used: {memory} MB\"\n",
" print(res)\n",
" print(memory)"
]
},
{
"cell_type": "markdown",
"id": "1edb40c1-98ce-4ae1-a486-42022f3b6b1b",
"metadata": {},
"source": [
"Now it comes the core of it. We will implement an `Attention` module following the same API and modules as timm's, but using our `scaled_dot_product_attention` function.\n",
"\n",
"Note the similarities between this implementation and the one from the [vision transformers notebook](https://github.com/fairinternal/xformers/blob/main/docs/source/vision_transformers.ipynb).\n",
"\n",
"Note that we are not implementing relative positional embedding for simplicity"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8def591e-be74-489a-af6b-45f90e13aadc",
"metadata": {},
"outputs": [],
"source": [
"from timm.models.layers import Mlp, DropPath\n",
"\n",
"\n",
"# exact the same one as from https://github.com/fairinternal/xformers/blob/main/docs/source/vision_transformers.ipynb\n",
"class Attention(torch.nn.Module):\n",
" def __init__(\n",
" self,\n",
" dim,\n",
" num_heads=8,\n",
" qkv_bias=False,\n",
" attn_drop=0.0,\n",
" proj_drop=0.0,\n",
" attn_mask=None,\n",
" **kwargs\n",
" ):\n",
" super().__init__()\n",
" self.num_heads = num_heads\n",
"\n",
" self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias)\n",
" self.attn_drop = torch.nn.Dropout(attn_drop)\n",
" self.proj = torch.nn.Linear(dim, dim)\n",
" self.proj_drop = torch.nn.Dropout(proj_drop)\n",
" self.attn_mask = attn_mask\n",
"\n",
" def forward(self, x):\n",
" B, N, C = x.shape\n",
" qkv = (\n",
" self.qkv(x)\n",
" .reshape(B, N, 3, self.num_heads, C // self.num_heads)\n",
" .permute(2, 0, 3, 1, 4)\n",
" )\n",
"\n",
" qkv = qkv.flatten(1, 2)\n",
"\n",
" q, k, v = qkv.unbind()\n",
" \n",
" x = scaled_dot_product_attention(q, k, v, self.attn_mask, dropout=self.attn_drop)\n",
" \n",
" x = x.reshape(B, self.num_heads, N, C // self.num_heads)\n",
"\n",
" x = x.transpose(1, 2).reshape(B, N, C)\n",
" x = self.proj(x)\n",
" x = self.proj_drop(x)\n",
" return x\n",
" \n",
"\n",
"# almost copy and paste from timm's implementation, but removing the unneeded elements\n",
"# as we don't need to perform the image partitioning anymore\n",
"# Note that we call our swin_attention_pattern in the constructor\n",
"# to generate the custom sparsity pattern\n",
"class SwinTransformerBlock(nn.Module):\n",
" r\"\"\" Swin Transformer Block.\n",
" Args:\n",
" dim (int): Number of input channels.\n",
" input_resolution (tuple[int]): Input resulotion.\n",
" num_heads (int): Number of attention heads.\n",
" window_size (int): Window size.\n",
" shift_size (int): Shift size for SW-MSA.\n",
" mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.\n",
" qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True\n",
" qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.\n",
" drop (float, optional): Dropout rate. Default: 0.0\n",
" attn_drop (float, optional): Attention dropout rate. Default: 0.0\n",
" drop_path (float, optional): Stochastic depth rate. Default: 0.0\n",
" act_layer (nn.Module, optional): Activation layer. Default: nn.GELU\n",
" norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm\n",
" \"\"\"\n",
"\n",
" def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,\n",
" mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,\n",
" act_layer=nn.GELU, norm_layer=nn.LayerNorm):\n",
" super().__init__()\n",
" self.dim = dim\n",
" self.input_resolution = input_resolution\n",
" self.num_heads = num_heads\n",
" self.window_size = window_size\n",
" self.shift_size = shift_size\n",
" self.mlp_ratio = mlp_ratio\n",
" if min(self.input_resolution) <= self.window_size:\n",
" # if window size is larger than input resolution, we don't partition windows\n",
" self.shift_size = 0\n",
" self.window_size = min(self.input_resolution)\n",
" assert 0 <= self.shift_size < self.window_size, \"shift_size must in 0-window_size\"\n",
" \n",
" # create swin_attention_pattern sparsity pattern\n",
" attn_mask = AP.swin_attention_pattern(input_resolution[0], input_resolution[1], window_size, shift_size=shift_size)\n",
" attn_mask = SparseCS(attn_mask, torch.device(\"cuda\"))\n",
"\n",
" self.norm1 = norm_layer(dim)\n",
" self.attn = Attention(\n",
" dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,\n",
" qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,\n",
" attn_mask=attn_mask\n",
" )\n",
"\n",
" self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()\n",
" self.norm2 = norm_layer(dim)\n",
" mlp_hidden_dim = int(dim * mlp_ratio)\n",
" self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)\n",
"\n",
" def forward(self, x):\n",
" H, W = self.input_resolution\n",
" B, L, C = x.shape\n",
" assert L == H * W, \"input feature has wrong size\"\n",
"\n",
" shortcut = x\n",
" x = self.norm1(x)\n",
"\n",
" # W-MSA/SW-MSA\n",
" x = self.attn(x) # nW*B, window_size*window_size, C\n",
"\n",
" # FFN\n",
" x = shortcut + self.drop_path(x)\n",
" x = x + self.drop_path(self.mlp(self.norm2(x)))\n",
"\n",
" return x"
]
},
{
"cell_type": "markdown",
"id": "e55578e0-1f4f-4a51-ab6c-eaa526e28b79",
"metadata": {},
"source": [
"Let's write a function that given a model, will replace all instances of timm.models.swin_transformer.SwinTransformerBlock with our own implementation, which leverages `scaled_dot_product_attention` and `swin_attention_pattern` from xformers\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "81e9c20f-69fb-48cc-b4e6-debb404e2240",
"metadata": {},
"outputs": [],
"source": [
"def replace_attn_with_xformers_one(module):\n",
" module_output = module\n",
" if isinstance(module, timm.models.swin_transformer.SwinTransformerBlock):\n",
" \n",
" module_output = SwinTransformerBlock(module.dim, module.input_resolution, module.num_heads, module.window_size, module.shift_size, module.mlp_ratio)\n",
" module_output.drop_path = module.drop_path\n",
" module_output.norm1 = module.norm1\n",
" module_output.norm2 = module.norm2\n",
" module_output.mlp = module.mlp\n",
" \n",
" module_output.attn.qkv = module.attn.qkv\n",
" module_output.attn.attn_drop = module.attn.attn_drop\n",
" module_output.attn.proj = module.attn.proj\n",
" module_output.attn.proj_drop = module.attn.proj_drop\n",
" \n",
" module_output.train(module.training)\n",
" \n",
" else:\n",
"\n",
" for name, child in module.named_children():\n",
" module_output.add_module(name, replace_attn_with_xformers_one(child))\n",
" del module\n",
" return module_output"
]
},
{
"cell_type": "markdown",
"id": "12eaa142-ae39-4a8e-bad9-20b3738e38d2",
"metadata": {},
"source": [
"Now it's time to create our Swin Transformer. Nothing unusual here. Note that we will be keeping a copy of the model, which will be the model to use sparse self-attention"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d04d2cab-f1ec-4151-b41b-0c3406f0d9f7",
"metadata": {},
"outputs": [],
"source": [
"model = timm.models.create_model(\"swin_base_patch4_window7_224\").cuda().eval()\n",
"\n",
"# zero relative positional embedding in original model as we don't implement it here\n",
"for n, p in model.named_parameters():\n",
" if \"relative_position_bias_table\" in n:\n",
" torch.nn.init.zeros_(p)\n",
"\n",
"model_sparse = copy.deepcopy(model)\n",
"model_sparse = replace_attn_with_xformers_one(model_sparse)"
]
},
{
"cell_type": "markdown",
"id": "42d3792a-c219-445e-bc24-e32d3d729a02",
"metadata": {},
"source": [
"Let's new create an input tensor verify if both the sparse and the baseline versions produce the same results"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "52c4fce7-2e5a-4214-8944-cd54832f90f8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Median absolute difference: 3.70e-05\n",
"Max absolute difference: 2.51e-04\n"
]
}
],
"source": [
"i = torch.rand(32, 3, 224, 224).cuda()\n",
"\n",
"with torch.no_grad():\n",
" r0 = model(i)\n",
" r1 = model_sparse(i)\n",
"\n",
"diff = (r0 - r1).abs()\n",
" \n",
"print(f\"Median absolute difference: {diff.median().item():.2e}\")\n",
"print(f\"Max absolute difference: {diff.max().item():.2e}\")"
]
},
{
"cell_type": "markdown",
"id": "6f7d83f9-b21b-48de-89dd-c255fef30f98",
"metadata": {},
"source": [
"The results are almost the same. The reason why they are not equivalent up to float precision is because we currently assume that the number of non-zero elements in the sparse matrix is a multiple of 4, so up to 3 elements in the self-attention might be dropped in order to satisfy this constraint.\n",
"This constraint will be lifted in the future.\n",
"\n",
"Let's new benchmark both the sparse and the baseline versions"
]
},
{
"cell_type": "markdown",
"id": "8ba0279a-ad14-4295-bb37-5778f60650dc",
"metadata": {},
"source": [
"### Profiling the baseline (dense) model"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "909b23f2-2ac7-488e-9447-089496d37346",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Forward only\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd83b4d60>\n",
"profile\n",
" Median: 212.33 ms\n",
" IQR: 9.49 ms (210.94 to 220.43)\n",
" 10 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 1448.72509765625 MB\n",
"\n",
"Forward + backward\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd868abe0>\n",
"profile\n",
" Median: 626.96 ms\n",
" IQR: 12.91 ms (623.15 to 636.06)\n",
" 4 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 8615.0703125 MB\n"
]
}
],
"source": [
"print(\"Forward only\")\n",
"with torch.no_grad():\n",
" profile_model(lambda : model(i))\n",
"print(\"\")\n",
"print(\"Forward + backward\")\n",
"profile_model(lambda : model(i).sum().backward())"
]
},
{
"cell_type": "markdown",
"id": "97bcc2c6-a2e7-403c-8b43-33c5f818a7c1",
"metadata": {},
"source": [
"### Profiling the sparse model"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4e17e1aa-6970-4b6f-9adb-4e51b55cb4ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Forward only\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd71b44c0>\n",
"profile\n",
" Median: 208.51 ms\n",
" IQR: 1.29 ms (208.06 to 209.34)\n",
" 10 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 1636.5673828125 MB\n",
"\n",
"Forward + backward\n",
"<torch.utils.benchmark.utils.common.Measurement object at 0x7f0dd83b4370>\n",
"profile\n",
" Median: 607.60 ms\n",
" IQR: 9.11 ms (605.09 to 614.20)\n",
" 4 measurements, 1 runs per measurement, 1 thread\n",
"Memory used: 8770.02001953125 MB\n"
]
}
],
"source": [
"print(\"Forward only\")\n",
"with torch.no_grad():\n",
" profile_model(lambda : model_sparse(i))\n",
"print(\"\")\n",
"print(\"Forward + backward\")\n",
"profile_model(lambda : model_sparse(i).sum().backward())"
]
},
{
"cell_type": "markdown",
"id": "6cfa7340-8d7c-4be5-861b-2354324f50ca",
"metadata": {},
"source": [
"Those results indicate that the sparse model achieves the same speed as the manually-implemented dense version.\n",
"This is very encouraging, as with a generic sparse implementation we are able to achieve comparable speed versus the optimized dense implementation, while being substantially simpler to implement (specially on the windows shift optimizations, see [\\[1\\]](https://github.com/microsoft/Swin-Transformer/issues/52) and [\\[2\\]](https://github.com/microsoft/Swin-Transformer/issues/38) for examples).\n",
"\n",
"From the memory perspective, the sparse model uses slightly more memory, as it needs to keep the indices of the non-zero elements in memory, while in the baseline dense model the structure is encoded directly in the code. Note that we can further reduce the memory needs by re-using the same sparse pattern over multiple layers."
]
},
{
"cell_type": "markdown",
"id": "95caaf5c-53b4-493e-8a66-1ad09d1917f6",
"metadata": {},
"source": [
"# Wrapping up\n",
"\n",
"In this notebook, we've shown that Swin Transformers can be casted as a sparse transformer, and we've shown that a generic implementation based on the sparse kernels from `xformers` is able to match performances compared to the hand-crafted implementation.\n",
"\n",
"We hope that this will further illustrate the power of custom sparsity patterns, and we hope xformers will enable new research directions on large sequences.\n",
"\n",
"Do not hesitate to reach out if you have questions."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|