Spaces:
Runtime error
Runtime error
File size: 34,073 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"## StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation \n",
"[]()\n",
"[[Paper]()]   [[Project Page]()]   <br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/flex/StoryDiffusion/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"# %load_ext autoreload\n",
"# %autoreload 2\n",
"import gradio as gr\n",
"import numpy as np\n",
"import torch\n",
"import requests\n",
"import random\n",
"import os\n",
"import sys\n",
"import pickle\n",
"from PIL import Image\n",
"from tqdm.auto import tqdm\n",
"from datetime import datetime\n",
"from utils.gradio_utils import is_torch2_available\n",
"if is_torch2_available():\n",
" from utils.gradio_utils import \\\n",
" AttnProcessor2_0 as AttnProcessor\n",
"else:\n",
" from utils.gradio_utils import AttnProcessor\n",
"\n",
"import diffusers\n",
"from diffusers import StableDiffusionXLPipeline\n",
"from diffusers import DDIMScheduler\n",
"import torch.nn.functional as F\n",
"from utils.gradio_utils import cal_attn_mask_xl\n",
"import copy\n",
"import os\n",
"from diffusers.utils import load_image\n",
"from utils.utils import get_comic\n",
"from utils.style_template import styles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set Config "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"## Global\n",
"STYLE_NAMES = list(styles.keys())\n",
"DEFAULT_STYLE_NAME = \"(No style)\"\n",
"MAX_SEED = np.iinfo(np.int32).max\n",
"global models_dict\n",
"use_va = False\n",
"models_dict = {\n",
" \"Juggernaut\":\"RunDiffusion/Juggernaut-XL-v8\",\n",
" \"RealVision\":\"SG161222/RealVisXL_V4.0\" ,\n",
" \"SDXL\":\"stabilityai/stable-diffusion-xl-base-1.0\" ,\n",
" \"Unstable\": \"stablediffusionapi/sdxl-unstable-diffusers-y\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.cuda.is_available()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def setup_seed(seed):\n",
" torch.manual_seed(seed)\n",
" torch.cuda.manual_seed_all(seed)\n",
" np.random.seed(seed)\n",
" random.seed(seed)\n",
" torch.backends.cudnn.deterministic = True\n",
"\n",
" \n",
"#################################################\n",
"########Consistent Self-Attention################\n",
"#################################################\n",
"class SpatialAttnProcessor2_0(torch.nn.Module):\n",
" r\"\"\"\n",
" Attention processor for IP-Adapater for PyTorch 2.0.\n",
" Args:\n",
" hidden_size (`int`):\n",
" The hidden size of the attention layer.\n",
" cross_attention_dim (`int`):\n",
" The number of channels in the `encoder_hidden_states`.\n",
" text_context_len (`int`, defaults to 77):\n",
" The context length of the text features.\n",
" scale (`float`, defaults to 1.0):\n",
" the weight scale of image prompt.\n",
" \"\"\"\n",
"\n",
" def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = \"cuda\",dtype = torch.float16):\n",
" super().__init__()\n",
" if not hasattr(F, \"scaled_dot_product_attention\"):\n",
" raise ImportError(\"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.\")\n",
" self.device = device\n",
" self.dtype = dtype\n",
" self.hidden_size = hidden_size\n",
" self.cross_attention_dim = cross_attention_dim\n",
" self.total_length = id_length + 1\n",
" self.id_length = id_length\n",
" self.id_bank = {}\n",
"\n",
" def __call__(\n",
" self,\n",
" attn,\n",
" hidden_states,\n",
" encoder_hidden_states=None,\n",
" attention_mask=None,\n",
" temb=None):\n",
" global total_count,attn_count,cur_step,mask1024,mask4096\n",
" global sa32, sa64\n",
" global write\n",
" global height,width\n",
" if write:\n",
" # print(f\"white:{cur_step}\")\n",
" self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]\n",
" else:\n",
" encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),hidden_states[:1],self.id_bank[cur_step][1].to(self.device),hidden_states[1:]))\n",
" # skip in early step\n",
" if cur_step <5:\n",
" hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)\n",
" else: # 256 1024 4096\n",
" random_number = random.random()\n",
" if cur_step <20:\n",
" rand_num = 0.3\n",
" else:\n",
" rand_num = 0.1\n",
" if random_number > rand_num:\n",
" if not write:\n",
" if hidden_states.shape[1] == (height//32) * (width//32):\n",
" attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]\n",
" else:\n",
" attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]\n",
" else:\n",
" if hidden_states.shape[1] == (height//32) * (width//32):\n",
" attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,:mask1024.shape[0] // self.total_length * self.id_length]\n",
" else:\n",
" attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,:mask4096.shape[0] // self.total_length * self.id_length]\n",
" hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)\n",
" else:\n",
" hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)\n",
" attn_count +=1\n",
" if attn_count == total_count:\n",
" attn_count = 0\n",
" cur_step += 1\n",
" mask1024,mask4096 = cal_attn_mask_xl(self.total_length,self.id_length,sa32,sa64,height,width, device=self.device, dtype= self.dtype)\n",
"\n",
" return hidden_states\n",
" def __call1__(\n",
" self,\n",
" attn,\n",
" hidden_states,\n",
" encoder_hidden_states=None,\n",
" attention_mask=None,\n",
" temb=None,\n",
" ):\n",
" residual = hidden_states\n",
" if attn.spatial_norm is not None:\n",
" hidden_states = attn.spatial_norm(hidden_states, temb)\n",
" input_ndim = hidden_states.ndim\n",
"\n",
" if input_ndim == 4:\n",
" total_batch_size, channel, height, width = hidden_states.shape\n",
" hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)\n",
" total_batch_size,nums_token,channel = hidden_states.shape\n",
" img_nums = total_batch_size//2\n",
" hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)\n",
"\n",
" batch_size, sequence_length, _ = hidden_states.shape\n",
"\n",
" if attn.group_norm is not None:\n",
" hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)\n",
"\n",
" query = attn.to_q(hidden_states)\n",
"\n",
" if encoder_hidden_states is None:\n",
" encoder_hidden_states = hidden_states # B, N, C\n",
" else:\n",
" encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)\n",
"\n",
" key = attn.to_k(encoder_hidden_states)\n",
" value = attn.to_v(encoder_hidden_states)\n",
"\n",
"\n",
" inner_dim = key.shape[-1]\n",
" head_dim = inner_dim // attn.heads\n",
"\n",
" query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)\n",
"\n",
" key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)\n",
" value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)\n",
" hidden_states = F.scaled_dot_product_attention(\n",
" query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False\n",
" )\n",
"\n",
" hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)\n",
" hidden_states = hidden_states.to(query.dtype)\n",
"\n",
"\n",
"\n",
" # linear proj\n",
" hidden_states = attn.to_out[0](hidden_states)\n",
" # dropout\n",
" hidden_states = attn.to_out[1](hidden_states)\n",
"\n",
"\n",
" if input_ndim == 4:\n",
" hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)\n",
" if attn.residual_connection:\n",
" hidden_states = hidden_states + residual\n",
" hidden_states = hidden_states / attn.rescale_output_factor\n",
" # print(hidden_states.shape)\n",
" return hidden_states\n",
" def __call2__(\n",
" self,\n",
" attn,\n",
" hidden_states,\n",
" encoder_hidden_states=None,\n",
" attention_mask=None,\n",
" temb=None):\n",
" residual = hidden_states\n",
"\n",
" if attn.spatial_norm is not None:\n",
" hidden_states = attn.spatial_norm(hidden_states, temb)\n",
"\n",
" input_ndim = hidden_states.ndim\n",
"\n",
" if input_ndim == 4:\n",
" batch_size, channel, height, width = hidden_states.shape\n",
" hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)\n",
"\n",
" batch_size, sequence_length, channel = (\n",
" hidden_states.shape\n",
" )\n",
" # print(hidden_states.shape)\n",
" if attention_mask is not None:\n",
" attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)\n",
" # scaled_dot_product_attention expects attention_mask shape to be\n",
" # (batch, heads, source_length, target_length)\n",
" attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])\n",
"\n",
" if attn.group_norm is not None:\n",
" hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)\n",
"\n",
" query = attn.to_q(hidden_states)\n",
"\n",
" if encoder_hidden_states is None:\n",
" encoder_hidden_states = hidden_states # B, N, C\n",
" else:\n",
" encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)\n",
"\n",
" key = attn.to_k(encoder_hidden_states)\n",
" value = attn.to_v(encoder_hidden_states)\n",
"\n",
" inner_dim = key.shape[-1]\n",
" head_dim = inner_dim // attn.heads\n",
"\n",
" query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)\n",
"\n",
" key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)\n",
" value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)\n",
"\n",
" hidden_states = F.scaled_dot_product_attention(\n",
" query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False\n",
" )\n",
"\n",
" hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)\n",
" hidden_states = hidden_states.to(query.dtype)\n",
"\n",
" # linear proj\n",
" hidden_states = attn.to_out[0](hidden_states)\n",
" # dropout\n",
" hidden_states = attn.to_out[1](hidden_states)\n",
"\n",
" if input_ndim == 4:\n",
" hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)\n",
"\n",
" if attn.residual_connection:\n",
" hidden_states = hidden_states + residual\n",
"\n",
" hidden_states = hidden_states / attn.rescale_output_factor\n",
"\n",
" return hidden_states\n",
"\n",
"def set_attention_processor(unet,id_length):\n",
" attn_procs = {}\n",
" for name in unet.attn_processors.keys():\n",
" cross_attention_dim = None if name.endswith(\"attn1.processor\") else unet.config.cross_attention_dim\n",
" if name.startswith(\"mid_block\"):\n",
" hidden_size = unet.config.block_out_channels[-1]\n",
" elif name.startswith(\"up_blocks\"):\n",
" block_id = int(name[len(\"up_blocks.\")])\n",
" hidden_size = list(reversed(unet.config.block_out_channels))[block_id]\n",
" elif name.startswith(\"down_blocks\"):\n",
" block_id = int(name[len(\"down_blocks.\")])\n",
" hidden_size = unet.config.block_out_channels[block_id]\n",
" if cross_attention_dim is None:\n",
" if name.startswith(\"up_blocks\") :\n",
" attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)\n",
" else: \n",
" attn_procs[name] = AttnProcessor()\n",
" else:\n",
" attn_procs[name] = AttnProcessor()\n",
"\n",
" unet.set_attn_processor(attn_procs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Pipeline"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading pipeline components...: 14%|█▍ | 1/7 [00:00<00:00, 6.29it/s]\n"
]
},
{
"ename": "OSError",
"evalue": "Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /Users/flex/.cache/huggingface/hub/models--SG161222--RealVisXL_V4.0/snapshots/49740684ab2d8f4f5dcf6c644df2b33388a8ba85/text_encoder.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 27\u001b[0m\n\u001b[1;32m 25\u001b[0m sd_model_path \u001b[39m=\u001b[39m models_dict[\u001b[39m\"\u001b[39m\u001b[39mRealVision\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m#\"SG161222/RealVisXL_V4.0\"\u001b[39;00m\n\u001b[1;32m 26\u001b[0m \u001b[39m### LOAD Stable Diffusion Pipeline\u001b[39;00m\n\u001b[0;32m---> 27\u001b[0m pipe \u001b[39m=\u001b[39m StableDiffusionXLPipeline\u001b[39m.\u001b[39;49mfrom_pretrained(sd_model_path, torch_dtype\u001b[39m=\u001b[39;49mtorch\u001b[39m.\u001b[39;49mfloat16, use_safetensors\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m)\n\u001b[1;32m 28\u001b[0m pipe \u001b[39m=\u001b[39m pipe\u001b[39m.\u001b[39mto(device)\n\u001b[1;32m 29\u001b[0m pipe\u001b[39m.\u001b[39menable_freeu(s1\u001b[39m=\u001b[39m\u001b[39m0.6\u001b[39m, s2\u001b[39m=\u001b[39m\u001b[39m0.4\u001b[39m, b1\u001b[39m=\u001b[39m\u001b[39m1.1\u001b[39m, b2\u001b[39m=\u001b[39m\u001b[39m1.2\u001b[39m)\n",
"File \u001b[0;32m~/StoryDiffusion/venv/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[39mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[39m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[39m=\u001b[39mfn\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m, has_token\u001b[39m=\u001b[39mhas_token, kwargs\u001b[39m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m~/StoryDiffusion/venv/lib/python3.12/site-packages/diffusers/pipelines/pipeline_utils.py:881\u001b[0m, in \u001b[0;36mDiffusionPipeline.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 878\u001b[0m loaded_sub_model \u001b[39m=\u001b[39m passed_class_obj[name]\n\u001b[1;32m 879\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 880\u001b[0m \u001b[39m# load sub model\u001b[39;00m\n\u001b[0;32m--> 881\u001b[0m loaded_sub_model \u001b[39m=\u001b[39m load_sub_model(\n\u001b[1;32m 882\u001b[0m library_name\u001b[39m=\u001b[39;49mlibrary_name,\n\u001b[1;32m 883\u001b[0m class_name\u001b[39m=\u001b[39;49mclass_name,\n\u001b[1;32m 884\u001b[0m importable_classes\u001b[39m=\u001b[39;49mimportable_classes,\n\u001b[1;32m 885\u001b[0m pipelines\u001b[39m=\u001b[39;49mpipelines,\n\u001b[1;32m 886\u001b[0m is_pipeline_module\u001b[39m=\u001b[39;49mis_pipeline_module,\n\u001b[1;32m 887\u001b[0m pipeline_class\u001b[39m=\u001b[39;49mpipeline_class,\n\u001b[1;32m 888\u001b[0m torch_dtype\u001b[39m=\u001b[39;49mtorch_dtype,\n\u001b[1;32m 889\u001b[0m provider\u001b[39m=\u001b[39;49mprovider,\n\u001b[1;32m 890\u001b[0m sess_options\u001b[39m=\u001b[39;49msess_options,\n\u001b[1;32m 891\u001b[0m device_map\u001b[39m=\u001b[39;49mcurrent_device_map,\n\u001b[1;32m 892\u001b[0m max_memory\u001b[39m=\u001b[39;49mmax_memory,\n\u001b[1;32m 893\u001b[0m offload_folder\u001b[39m=\u001b[39;49moffload_folder,\n\u001b[1;32m 894\u001b[0m offload_state_dict\u001b[39m=\u001b[39;49moffload_state_dict,\n\u001b[1;32m 895\u001b[0m model_variants\u001b[39m=\u001b[39;49mmodel_variants,\n\u001b[1;32m 896\u001b[0m name\u001b[39m=\u001b[39;49mname,\n\u001b[1;32m 897\u001b[0m from_flax\u001b[39m=\u001b[39;49mfrom_flax,\n\u001b[1;32m 898\u001b[0m variant\u001b[39m=\u001b[39;49mvariant,\n\u001b[1;32m 899\u001b[0m low_cpu_mem_usage\u001b[39m=\u001b[39;49mlow_cpu_mem_usage,\n\u001b[1;32m 900\u001b[0m cached_folder\u001b[39m=\u001b[39;49mcached_folder,\n\u001b[1;32m 901\u001b[0m )\n\u001b[1;32m 902\u001b[0m logger\u001b[39m.\u001b[39minfo(\n\u001b[1;32m 903\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mLoaded \u001b[39m\u001b[39m{\u001b[39;00mname\u001b[39m}\u001b[39;00m\u001b[39m as \u001b[39m\u001b[39m{\u001b[39;00mclass_name\u001b[39m}\u001b[39;00m\u001b[39m from `\u001b[39m\u001b[39m{\u001b[39;00mname\u001b[39m}\u001b[39;00m\u001b[39m` subfolder of \u001b[39m\u001b[39m{\u001b[39;00mpretrained_model_name_or_path\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 904\u001b[0m )\n\u001b[1;32m 906\u001b[0m init_kwargs[name] \u001b[39m=\u001b[39m loaded_sub_model \u001b[39m# UNet(...), # DiffusionSchedule(...)\u001b[39;00m\n",
"File \u001b[0;32m~/StoryDiffusion/venv/lib/python3.12/site-packages/diffusers/pipelines/pipeline_loading_utils.py:703\u001b[0m, in \u001b[0;36mload_sub_model\u001b[0;34m(library_name, class_name, importable_classes, pipelines, is_pipeline_module, pipeline_class, torch_dtype, provider, sess_options, device_map, max_memory, offload_folder, offload_state_dict, model_variants, name, from_flax, variant, low_cpu_mem_usage, cached_folder)\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[39m# check if the module is in a subdirectory\u001b[39;00m\n\u001b[1;32m 702\u001b[0m \u001b[39mif\u001b[39;00m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39misdir(os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mjoin(cached_folder, name)):\n\u001b[0;32m--> 703\u001b[0m loaded_sub_model \u001b[39m=\u001b[39m load_method(os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49mjoin(cached_folder, name), \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mloading_kwargs)\n\u001b[1;32m 704\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 705\u001b[0m \u001b[39m# else load from the root directory\u001b[39;00m\n\u001b[1;32m 706\u001b[0m loaded_sub_model \u001b[39m=\u001b[39m load_method(cached_folder, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mloading_kwargs)\n",
"File \u001b[0;32m~/StoryDiffusion/venv/lib/python3.12/site-packages/transformers/modeling_utils.py:3447\u001b[0m, in \u001b[0;36mPreTrainedModel.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 3442\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mEnvironmentError\u001b[39;00m(\n\u001b[1;32m 3443\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mError no file named \u001b[39m\u001b[39m{\u001b[39;00m_add_variant(SAFE_WEIGHTS_NAME,\u001b[39m \u001b[39mvariant)\u001b[39m}\u001b[39;00m\u001b[39m found in directory\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 3444\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m{\u001b[39;00mpretrained_model_name_or_path\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 3445\u001b[0m )\n\u001b[1;32m 3446\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 3447\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mEnvironmentError\u001b[39;00m(\n\u001b[1;32m 3448\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mError no file named \u001b[39m\u001b[39m{\u001b[39;00m_add_variant(WEIGHTS_NAME,\u001b[39m \u001b[39mvariant)\u001b[39m}\u001b[39;00m\u001b[39m, \u001b[39m\u001b[39m{\u001b[39;00m_add_variant(SAFE_WEIGHTS_NAME,\u001b[39m \u001b[39mvariant)\u001b[39m}\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 3449\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m{\u001b[39;00mTF2_WEIGHTS_NAME\u001b[39m}\u001b[39;00m\u001b[39m, \u001b[39m\u001b[39m{\u001b[39;00mTF_WEIGHTS_NAME\u001b[39m \u001b[39m\u001b[39m+\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m\u001b[39m.index\u001b[39m\u001b[39m'\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m or \u001b[39m\u001b[39m{\u001b[39;00mFLAX_WEIGHTS_NAME\u001b[39m}\u001b[39;00m\u001b[39m found in directory\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 3450\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m{\u001b[39;00mpretrained_model_name_or_path\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 3451\u001b[0m )\n\u001b[1;32m 3452\u001b[0m \u001b[39melif\u001b[39;00m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39misfile(os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mjoin(subfolder, pretrained_model_name_or_path)):\n\u001b[1;32m 3453\u001b[0m archive_file \u001b[39m=\u001b[39m pretrained_model_name_or_path\n",
"\u001b[0;31mOSError\u001b[0m: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /Users/flex/.cache/huggingface/hub/models--SG161222--RealVisXL_V4.0/snapshots/49740684ab2d8f4f5dcf6c644df2b33388a8ba85/text_encoder."
]
}
],
"source": [
"global attn_count, total_count, id_length, total_length,cur_step, cur_model_type\n",
"global write\n",
"global sa32, sa64\n",
"global height,width\n",
"attn_count = 0\n",
"total_count = 0\n",
"cur_step = 0\n",
"id_length = 4\n",
"total_length = 5\n",
"cur_model_type = \"\"\n",
"device=\"cuda\"\n",
"global attn_procs,unet\n",
"attn_procs = {}\n",
"###\n",
"write = False\n",
"### strength of consistent self-attention: the larger, the stronger\n",
"sa32 = 0.5\n",
"sa64 = 0.5\n",
"### Res. of the Generated Comics. Please Note: SDXL models may do worse in a low-resolution! \n",
"height = 768\n",
"width = 768\n",
"###\n",
"global pipe\n",
"global sd_model_path\n",
"sd_model_path = models_dict[\"RealVision\"] #\"SG161222/RealVisXL_V4.0\"\n",
"### LOAD Stable Diffusion Pipeline\n",
"pipe = StableDiffusionXLPipeline.from_pretrained(sd_model_path, torch_dtype=torch.float16, use_safetensors=False)\n",
"pipe = pipe.to(device)\n",
"pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)\n",
"pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)\n",
"pipe.scheduler.set_timesteps(50)\n",
"unet = pipe.unet\n",
"\n",
"### Insert PairedAttention\n",
"for name in unet.attn_processors.keys():\n",
" cross_attention_dim = None if name.endswith(\"attn1.processor\") else unet.config.cross_attention_dim\n",
" if name.startswith(\"mid_block\"):\n",
" hidden_size = unet.config.block_out_channels[-1]\n",
" elif name.startswith(\"up_blocks\"):\n",
" block_id = int(name[len(\"up_blocks.\")])\n",
" hidden_size = list(reversed(unet.config.block_out_channels))[block_id]\n",
" elif name.startswith(\"down_blocks\"):\n",
" block_id = int(name[len(\"down_blocks.\")])\n",
" hidden_size = unet.config.block_out_channels[block_id]\n",
" if cross_attention_dim is None and (name.startswith(\"up_blocks\") ) :\n",
" attn_procs[name] = SpatialAttnProcessor2_0(id_length = id_length)\n",
" total_count +=1\n",
" else:\n",
" attn_procs[name] = AttnProcessor()\n",
"print(\"successsfully load consistent self-attention\")\n",
"print(f\"number of the processor : {total_count}\")\n",
"unet.set_attn_processor(copy.deepcopy(attn_procs))\n",
"global mask1024,mask4096\n",
"mask1024, mask4096 = cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device=device,dtype= torch.float16)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the text description for the comics\n",
"Tips: Existing text2image diffusion models may not always generate images that accurately match text descriptions. Our training-free approach can improve the consistency of characters, but it does not enhance the control over the text. Therefore, in some cases, you may need to carefully craft your prompts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"guidance_scale = 5.0\n",
"seed = 2047\n",
"sa32 = 0.5\n",
"sa64 = 0.5\n",
"id_length = 4\n",
"num_steps = 50\n",
"general_prompt = \"a man with a black suit\"\n",
"negative_prompt = \"naked, deformed, bad anatomy, disfigured, poorly drawn face, mutation, extra limb, ugly, disgusting, poorly drawn hands, missing limb, floating limbs, disconnected limbs, blurry, watermarks, oversaturated, distorted hands, amputation\"\n",
"prompt_array = [\"wake up in the bed\",\n",
" \"have breakfast\",\n",
" \"is on the road, go to the company\",\n",
" \"work in the company\",\n",
" \"running in the playground\",\n",
" \"reading book in the home\"\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def apply_style_positive(style_name: str, positive: str):\n",
" p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])\n",
" return p.replace(\"{prompt}\", positive) \n",
"def apply_style(style_name: str, positives: list, negative: str = \"\"):\n",
" p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])\n",
" return [p.replace(\"{prompt}\", positive) for positive in positives], n + ' ' + negative\n",
"### Set the generated Style\n",
"style_name = \"Comic book\"\n",
"setup_seed(seed)\n",
"generator = torch.Generator(device=\"cuda\").manual_seed(seed)\n",
"prompts = [general_prompt+\",\"+prompt for prompt in prompt_array]\n",
"id_prompts = prompts[:id_length]\n",
"real_prompts = prompts[id_length:]\n",
"torch.cuda.empty_cache()\n",
"write = True\n",
"cur_step = 0\n",
"attn_count = 0\n",
"id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)\n",
"id_images = pipe(id_prompts, num_inference_steps = num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images\n",
"\n",
"write = False\n",
"for id_image in id_images:\n",
" display(id_image)\n",
"real_images = []\n",
"for real_prompt in real_prompts:\n",
" cur_step = 0\n",
" real_prompt = apply_style_positive(style_name, real_prompt)\n",
" real_images.append(pipe(real_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])\n",
"for real_image in real_images:\n",
" display(real_image) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Continued Creation\n",
"From now on, you can create endless stories about this character without worrying about memory constraints."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"new_prompt_array = [\"siting on the sofa\",\n",
" \"on the bed, at night \"]\n",
"new_prompts = [general_prompt+\",\"+prompt for prompt in new_prompt_array]\n",
"new_images = []\n",
"for new_prompt in new_prompts :\n",
" cur_step = 0\n",
" new_prompt = apply_style_positive(style_name, new_prompt)\n",
" new_images.append(pipe(new_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, height = height, width = width,negative_prompt = negative_prompt,generator = generator).images[0])\n",
"for new_image in new_images:\n",
" display(new_image) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make pictures into comics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"###\n",
"total_images = id_images + real_images + new_images\n",
"from PIL import Image,ImageOps,ImageDraw, ImageFont\n",
"#### LOAD Fonts, can also replace with any Fonts you have!\n",
"font = ImageFont.truetype(\"./fonts/Inkfree.ttf\", 30)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import importlib\n",
"# import utils.utils\n",
"# importlib.reload(utils)\n",
"from utils.utils import get_row_image\n",
"from utils.utils import get_row_image\n",
"from utils.utils import get_comic_4panel"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"comics = get_comic_4panel(total_images, captions = prompt_array+ new_prompts,font = font )\n",
"for comic in comics:\n",
" display(comic)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"fileId": "51613593-0d85-430e-8fce-c85e580fc483",
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
},
"vscode": {
"interpreter": {
"hash": "c1bd42f2f9f6cfcf8171e9e1e863f0572afe983234a3d808193da2fd055f98b3"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|