|
from fastapi import FastAPI, Request, Response, status |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import os |
|
import time |
|
|
|
app = FastAPI() |
|
|
|
|
|
cache_dir = "./model_cache" |
|
os.makedirs(cache_dir, exist_ok=True) |
|
|
|
|
|
app_status = { |
|
"status": "initializing", |
|
"model_name": "distilgpt2", |
|
"model_loaded": False, |
|
"tokenizer_loaded": False, |
|
"startup_time": time.time(), |
|
"errors": [] |
|
} |
|
|
|
|
|
model_name = "distilgpt2" |
|
try: |
|
|
|
app_status["status"] = "loading_tokenizer" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) |
|
app_status["tokenizer_loaded"] = True |
|
|
|
|
|
app_status["status"] = "loading_model" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True, cache_dir=cache_dir) |
|
app_status["model_loaded"] = True |
|
|
|
app_status["status"] = "ready" |
|
except Exception as e: |
|
error_msg = f"Error loading model or tokenizer: {str(e)}" |
|
app_status["status"] = "limited_functionality" |
|
app_status["errors"].append(error_msg) |
|
print(error_msg) |
|
|
|
class PromptRequest(BaseModel): |
|
prompt: str |
|
max_new_tokens: int = 50 |
|
|
|
@app.post("/generate") |
|
async def generate_text(req: PromptRequest, response: Response): |
|
if app_status["status"] != "ready": |
|
response.status_code = status.HTTP_503_SERVICE_UNAVAILABLE |
|
return {"error": "Model not ready", "status": app_status["status"], "details": app_status["errors"]} |
|
|
|
try: |
|
inputs = tokenizer(req.prompt, return_tensors="pt") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=req.max_new_tokens, |
|
do_sample=True, |
|
temperature=0.8, |
|
top_p=0.95, |
|
) |
|
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"generated_text": generated} |
|
except Exception as e: |
|
response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR |
|
return {"error": str(e)} |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "API is responding", "status": app_status["status"]} |
|
|
|
@app.get("/status") |
|
async def get_status(): |
|
|
|
uptime = time.time() - app_status["startup_time"] |
|
|
|
return { |
|
"status": app_status["status"], |
|
"model_name": app_status["model_name"], |
|
"model_loaded": app_status["model_loaded"], |
|
"tokenizer_loaded": app_status["tokenizer_loaded"], |
|
"uptime_seconds": uptime, |
|
"errors": app_status["errors"] |
|
} |