|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import os |
|
|
|
|
|
model_directory = "tiny-gpt2" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_directory) |
|
model = AutoModelForCausalLM.from_pretrained(model_directory) |
|
|
|
|
|
app = FastAPI() |
|
|
|
class PromptRequest(BaseModel): |
|
prompt: str |
|
max_new_tokens: int = 50 |
|
|
|
@app.post("/generate") |
|
async def generate_text(request: PromptRequest): |
|
|
|
inputs = tokenizer.encode(request.prompt, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(inputs, max_length=request.max_new_tokens + len(inputs[0])) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return {"generated_text": generated_text} |
|
|