Spaces:
Running
Running
Create detect_elements.py
Browse files- tools/detect_elements.py +69 -0
tools/detect_elements.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents.tools import Tool
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
|
6 |
+
def detect_elements(screenshot_path, element_type="table"):
|
7 |
+
"""
|
8 |
+
Detect table-like structures or text boxes in a screenshot using OpenCV.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
screenshot_path (str): Path to the screenshot
|
12 |
+
element_type (str): Type of element to detect ('table', 'textbox') (default: 'table')
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: JSON with bounding boxes and detection details
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
if not os.path.exists(screenshot_path):
|
19 |
+
return f"Screenshot not found: {screenshot_path}"
|
20 |
+
|
21 |
+
# Read and preprocess image
|
22 |
+
image = cv2.imread(screenshot_path)
|
23 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
24 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
25 |
+
edges = cv2.Canny(blurred, 50, 150)
|
26 |
+
|
27 |
+
# Detect contours
|
28 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
29 |
+
detections = []
|
30 |
+
|
31 |
+
for contour in contours:
|
32 |
+
x, y, w, h = cv2.boundingRect(contour)
|
33 |
+
area = w * h
|
34 |
+
aspect_ratio = w / h if h > 0 else 0
|
35 |
+
|
36 |
+
# Filter for tables (rectangular, large area)
|
37 |
+
if element_type == "table" and area > 10000 and 0.5 < aspect_ratio < 2.0:
|
38 |
+
detections.append({"type": "table", "bbox": [x, y, w, h]})
|
39 |
+
# Filter for text boxes (narrow, horizontal)
|
40 |
+
elif element_type == "textbox" and area > 500 and aspect_ratio > 2.0:
|
41 |
+
detections.append({"type": "textbox", "bbox": [x, y, w, h]})
|
42 |
+
|
43 |
+
# Draw bounding boxes on a copy of the image
|
44 |
+
output_path = screenshot_path.replace(".png", "_detected.png")
|
45 |
+
output_image = image.copy()
|
46 |
+
for detection in detections:
|
47 |
+
x, y, w, h = detection["bbox"]
|
48 |
+
color = (0, 255, 0) if detection["type"] == "table" else (0, 0, 255)
|
49 |
+
cv2.rectangle(output_image, (x, y), (x + w, y + h), color, 2)
|
50 |
+
cv2.imwrite(output_path, output_image)
|
51 |
+
|
52 |
+
return json.dumps({
|
53 |
+
"detections": detections,
|
54 |
+
"output_image": output_path
|
55 |
+
}) if detections else "No elements detected"
|
56 |
+
except Exception as e:
|
57 |
+
return f"Failed to detect elements: {str(e)}"
|
58 |
+
|
59 |
+
# Register the tool
|
60 |
+
tool = Tool(
|
61 |
+
name="detect_elements",
|
62 |
+
description="Detects table-like structures or text boxes in a screenshot using OpenCV.",
|
63 |
+
inputs={
|
64 |
+
"screenshot_path": {"type": "str", "description": "Path to the screenshot"},
|
65 |
+
"element_type": {"type": "str", "default": "table", "description": "Type: 'table' or 'textbox'"}
|
66 |
+
},
|
67 |
+
output_type="str",
|
68 |
+
function=detect_elements
|
69 |
+
)
|