from langchain.callbacks.base import BaseCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.schema import ChatMessage import streamlit as st class StreamHandler(BaseCallbackHandler): def __init__(self, container, initial_text=""): self.container = container self.text = initial_text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) with st.sidebar: openai_api_key = st.text_input("OpenAI API Key", type="password") if "messages" not in st.session_state: st.session_state["messages"] = [ChatMessage(role="assistant", content="How can I help you?")] for msg in st.session_state.messages: st.chat_message(msg.role).write(msg.content) if prompt := st.chat_input(): st.session_state.messages.append(ChatMessage(role="user", content=prompt)) st.chat_message("user").write(prompt) if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() with st.chat_message("assistant"): stream_handler = StreamHandler(st.empty()) llm = ChatOpenAI(openai_api_key=openai_api_key, streaming=True, callbacks=[stream_handler]) response = llm(st.session_state.messages) st.session_state.messages.append(ChatMessage(role="assistant", content=response.content))