File size: 7,442 Bytes
1a3675b
9e3ce60
1a3675b
 
 
 
 
 
 
 
 
 
 
 
 
e98274a
1a3675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a4f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5b0ee
 
a7a4f85
 
de5b0ee
 
a7a4f85
 
 
 
 
 
 
 
de5b0ee
a7a4f85
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import streamlit as st
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline

class URLValidator:
    """
    A production-ready URL validation class that evaluates the credibility of a webpage
    using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
    """

    def __init__(self):
        # SerpAPI Key
        self.serpapi_key = os.getenv("SERPAPI_KEY")

        # Load models once to avoid redundant API calls
        self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
        self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
        self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")

    def fetch_page_content(self, url: str) -> str:
        """ Fetches and extracts text content from the given URL. """
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, "html.parser")
            return " ".join([p.text for p in soup.find_all("p")])  # Extract paragraph text
        except requests.RequestException:
            return ""  # Fail gracefully by returning an empty string

    def get_domain_trust(self, url: str, content: str) -> int:
        """ Computes the domain trust score based on available data sources. """
        trust_scores = []
        if content:
            try:
                trust_scores.append(self.get_domain_trust_huggingface(content))
            except:
                pass

        return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50

    def get_domain_trust_huggingface(self, content: str) -> int:
        """ Uses a Hugging Face fake news detection model to assess credibility. """
        if not content:
            return 50  # Default score if no content available
        result = self.fake_news_classifier(content[:512])[0]  # Process only first 512 characters
        return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50

    def compute_similarity_score(self, user_query: str, content: str) -> int:
        """ Computes semantic similarity between user query and page content. """
        if not content:
            return 0
        return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)

    def check_facts(self, content: str) -> int:
        """ Cross-checks extracted content with Google Fact Check API. """
        if not content:
            return 50
        api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
        try:
            response = requests.get(api_url)
            data = response.json()
            return 80 if "claims" in data and data["claims"] else 40
        except:
            return 50  # Default uncertainty score

    def check_google_scholar(self, url: str) -> int:
        """ Checks Google Scholar citations using SerpAPI. """
        serpapi_key = self.serpapi_key
        params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
        try:
            response = requests.get("https://serpapi.com/search", params=params)
            data = response.json()
            return min(len(data.get("organic_results", [])) * 10, 100)  # Normalize
        except:
            return 0  # Default to no citations

    def detect_bias(self, content: str) -> int:
        """ Uses NLP sentiment analysis to detect potential bias in content. """
        if not content:
            return 50
        sentiment_result = self.sentiment_analyzer(content[:512])[0]
        return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30

    def get_star_rating(self, score: float) -> tuple:
        """ Converts a score (0-100) into a 1-5 star rating. """
        stars = max(1, min(5, round(score / 20)))  # Normalize 100-scale to 5-star scale
        return stars, "⭐" * stars

    def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score) -> str:
        """ Generates a human-readable explanation for the score. """
        reasons = []
        if domain_trust < 50:
            reasons.append("The source has low domain authority.")
        if similarity_score < 50:
            reasons.append("The content is not highly relevant to your query.")
        if fact_check_score < 50:
            reasons.append("Limited fact-checking verification found.")
        if bias_score < 50:
            reasons.append("Potential bias detected in the content.")
        if citation_score < 30:
            reasons.append("Few citations found for this content.")

        return " ".join(reasons) if reasons else "This source is highly credible and relevant."

    def rate_url_validity(self, user_query: str, url: str) -> dict:
        """ Main function to evaluate the validity of a webpage. """
        content = self.fetch_page_content(url)

        domain_trust = self.get_domain_trust(url, content)
        similarity_score = self.compute_similarity_score(user_query, content)
        fact_check_score = self.check_facts(content)
        bias_score = self.detect_bias(content)
        citation_score = self.check_google_scholar(url)

        final_score = (
            (0.3 * domain_trust) +
            (0.3 * similarity_score) +
            (0.2 * fact_check_score) +
            (0.1 * bias_score) +
            (0.1 * citation_score)
        )

        stars, icon = self.get_star_rating(final_score)
        explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score)

        return {
            "raw_score": {
                "Domain Trust": domain_trust,
                "Content Relevance": similarity_score,
                "Fact-Check Score": fact_check_score,
                "Bias Score": bias_score,
                "Citation Score": citation_score,
                "Final Validity Score": final_score
            },
            "stars": {
                "score": stars,
                "icon": icon
            },
            "explanation": explanation
        }

# Streamlit app
st.write("# LEVEL1 TITLE: APP")  # Title for level 1
st.write("This is my first app")  # Description

# User input fields
user_prompt = st.text_input("Enter your search query:", "I have just been on an international flight, can I come back home to hold my 1-month-old newborn?")
url_to_check = st.text_input("Enter the URL to validate:", "https://www.mayoclinic.org/healthy-lifestyle/infant-and-toddler-health/expert-answers/air-travel-with-infant/faq-20058539")

# Run validation when the button is clicked
if st.button("Validate URL"):
    if not user_prompt.strip() or not url_to_check.strip():
        st.warning("Please enter both a search query and a URL.")
    else:
        with st.spinner("Validating URL..."):
            # Instantiate the URLValidator class
            validator = URLValidator()
            result = validator.rate_url_validity(user_prompt, url_to_check)

        # Display results in JSON format
        st.subheader("Validation Results")
        st.json(result)