Spaces:
Sleeping
Sleeping
File size: 7,442 Bytes
1a3675b 9e3ce60 1a3675b e98274a 1a3675b a7a4f85 de5b0ee a7a4f85 de5b0ee a7a4f85 de5b0ee a7a4f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import streamlit as st
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
class URLValidator:
"""
A production-ready URL validation class that evaluates the credibility of a webpage
using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
"""
def __init__(self):
# SerpAPI Key
self.serpapi_key = os.getenv("SERPAPI_KEY")
# Load models once to avoid redundant API calls
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
def fetch_page_content(self, url: str) -> str:
""" Fetches and extracts text content from the given URL. """
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
return " ".join([p.text for p in soup.find_all("p")]) # Extract paragraph text
except requests.RequestException:
return "" # Fail gracefully by returning an empty string
def get_domain_trust(self, url: str, content: str) -> int:
""" Computes the domain trust score based on available data sources. """
trust_scores = []
if content:
try:
trust_scores.append(self.get_domain_trust_huggingface(content))
except:
pass
return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50
def get_domain_trust_huggingface(self, content: str) -> int:
""" Uses a Hugging Face fake news detection model to assess credibility. """
if not content:
return 50 # Default score if no content available
result = self.fake_news_classifier(content[:512])[0] # Process only first 512 characters
return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50
def compute_similarity_score(self, user_query: str, content: str) -> int:
""" Computes semantic similarity between user query and page content. """
if not content:
return 0
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
def check_facts(self, content: str) -> int:
""" Cross-checks extracted content with Google Fact Check API. """
if not content:
return 50
api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
try:
response = requests.get(api_url)
data = response.json()
return 80 if "claims" in data and data["claims"] else 40
except:
return 50 # Default uncertainty score
def check_google_scholar(self, url: str) -> int:
""" Checks Google Scholar citations using SerpAPI. """
serpapi_key = self.serpapi_key
params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
try:
response = requests.get("https://serpapi.com/search", params=params)
data = response.json()
return min(len(data.get("organic_results", [])) * 10, 100) # Normalize
except:
return 0 # Default to no citations
def detect_bias(self, content: str) -> int:
""" Uses NLP sentiment analysis to detect potential bias in content. """
if not content:
return 50
sentiment_result = self.sentiment_analyzer(content[:512])[0]
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
def get_star_rating(self, score: float) -> tuple:
""" Converts a score (0-100) into a 1-5 star rating. """
stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale
return stars, "⭐" * stars
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score) -> str:
""" Generates a human-readable explanation for the score. """
reasons = []
if domain_trust < 50:
reasons.append("The source has low domain authority.")
if similarity_score < 50:
reasons.append("The content is not highly relevant to your query.")
if fact_check_score < 50:
reasons.append("Limited fact-checking verification found.")
if bias_score < 50:
reasons.append("Potential bias detected in the content.")
if citation_score < 30:
reasons.append("Few citations found for this content.")
return " ".join(reasons) if reasons else "This source is highly credible and relevant."
def rate_url_validity(self, user_query: str, url: str) -> dict:
""" Main function to evaluate the validity of a webpage. """
content = self.fetch_page_content(url)
domain_trust = self.get_domain_trust(url, content)
similarity_score = self.compute_similarity_score(user_query, content)
fact_check_score = self.check_facts(content)
bias_score = self.detect_bias(content)
citation_score = self.check_google_scholar(url)
final_score = (
(0.3 * domain_trust) +
(0.3 * similarity_score) +
(0.2 * fact_check_score) +
(0.1 * bias_score) +
(0.1 * citation_score)
)
stars, icon = self.get_star_rating(final_score)
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score)
return {
"raw_score": {
"Domain Trust": domain_trust,
"Content Relevance": similarity_score,
"Fact-Check Score": fact_check_score,
"Bias Score": bias_score,
"Citation Score": citation_score,
"Final Validity Score": final_score
},
"stars": {
"score": stars,
"icon": icon
},
"explanation": explanation
}
# Streamlit app
st.write("# LEVEL1 TITLE: APP") # Title for level 1
st.write("This is my first app") # Description
# User input fields
user_prompt = st.text_input("Enter your search query:", "I have just been on an international flight, can I come back home to hold my 1-month-old newborn?")
url_to_check = st.text_input("Enter the URL to validate:", "https://www.mayoclinic.org/healthy-lifestyle/infant-and-toddler-health/expert-answers/air-travel-with-infant/faq-20058539")
# Run validation when the button is clicked
if st.button("Validate URL"):
if not user_prompt.strip() or not url_to_check.strip():
st.warning("Please enter both a search query and a URL.")
else:
with st.spinner("Validating URL..."):
# Instantiate the URLValidator class
validator = URLValidator()
result = validator.rate_url_validity(user_prompt, url_to_check)
# Display results in JSON format
st.subheader("Validation Results")
st.json(result)
|