import streamlit as st from transformers import pipeline from gtts import gTTS import os # Function: Image to Text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # Function: Text to Story (Placeholder) def text2story(text): story_text = text # Placeholder for now return story_text # Function: Text to Audio def text2audio(story_text): # Convert text to audio using gTTS tts = gTTS(story_text, lang="en") audio_file = "story_audio.wav" tts.save(audio_file) return audio_file # Streamlit App st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) # Stage 1: Image to Text st.text('Processing img2text...') scenario = img2text(uploaded_file.name) st.write(scenario) # Stage 2: Text to Story st.text('Generating a story...') story = text2story(scenario) st.write(story) # Stage 3: Story to Audio st.text('Generating audio data...') audio_file = text2audio(story) # Play button if st.button("Play Audio"): st.audio(audio_file, format="audio/wav")