Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
# import part
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
-
import torch
|
5 |
import soundfile as sf
|
6 |
import numpy as np
|
7 |
|
@@ -14,13 +13,12 @@ def img2text(url):
|
|
14 |
|
15 |
# text2story
|
16 |
def text2story(text):
|
17 |
-
story_text_model = pipeline("text-generation", model="
|
18 |
story = story_text_model(text, max_length=150)[0]['generated_text']
|
19 |
return story
|
20 |
|
21 |
# text2audio
|
22 |
def text2audio(story_text):
|
23 |
-
# Here we will use a text-to-speech model from Hugging Face
|
24 |
tts_model = pipeline("text-to-speech", model="tts_models/en/ljspeech/tacotron2")
|
25 |
audio_data = tts_model(story_text)
|
26 |
|
|
|
1 |
# import part
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
|
|
4 |
import soundfile as sf
|
5 |
import numpy as np
|
6 |
|
|
|
13 |
|
14 |
# text2story
|
15 |
def text2story(text):
|
16 |
+
story_text_model = pipeline("text-generation", model="meta-llama/Llama-3.1-8B")
|
17 |
story = story_text_model(text, max_length=150)[0]['generated_text']
|
18 |
return story
|
19 |
|
20 |
# text2audio
|
21 |
def text2audio(story_text):
|
|
|
22 |
tts_model = pipeline("text-to-speech", model="tts_models/en/ljspeech/tacotron2")
|
23 |
audio_data = tts_model(story_text)
|
24 |
|