assignment / app.py
Fanny1366's picture
Update app.py
85a0c1a verified
raw
history blame
1.82 kB
# import part
import streamlit as st
from transformers import pipeline
import soundfile as sf
import numpy as np
import tempfile
# function part
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
story_text_model = pipeline("text-generation", model="google/gemma-2-9b-it")
story = story_text_model(text, max_length=150)[0]['generated_text']
return story
# text2audio
def text2audio(story_text):
tts_model = pipeline("text-to-speech", model="tts_models/en/ljspeech/tacotron2")
audio_data = tts_model(story_text)
# Save audio to a temporary file
audio_filename = tempfile.mktemp(suffix=".wav")
sf.write(audio_filename, audio_data['audio'], audio_data['sampling_rate'])
return audio_filename
# main part
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
# Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
# Stage 3: Story to Audio data
st.text('Generating audio data...')
audio_filename = text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_filename, format="audio/wav")