Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
from diffusers import StableDiffusionPipeline, DiffusionPipeline
|
5 |
+
from huggingface_hub import HfApi
|
6 |
+
|
7 |
+
# Set up Hugging Face API
|
8 |
+
api = HfApi()
|
9 |
+
|
10 |
+
# Define a function to load a language model
|
11 |
+
def load_language_model(model_name):
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
return model, tokenizer
|
15 |
+
|
16 |
+
# Define a function to generate text with a language model
|
17 |
+
def generate_text(model, tokenizer, prompt):
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
19 |
+
outputs = model(**inputs)
|
20 |
+
return tokenizer.decode(outputs.logits[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
# Define a function to generate an image with Stable Diffusion
|
23 |
+
def generate_image(prompt, model_name):
|
24 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_name)
|
25 |
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
26 |
+
return image
|
27 |
+
|
28 |
+
# Define a function to generate video or music with other diffusion models
|
29 |
+
def generate_media(prompt, model_name, media_type):
|
30 |
+
pipe = DiffusionPipeline.from_pretrained(model_name)
|
31 |
+
if media_type == "video":
|
32 |
+
output = pipe(prompt, num_inference_steps=50).videos[0]
|
33 |
+
elif media_type == "music":
|
34 |
+
output = pipe(prompt, num_inference_steps=50).audios[0]
|
35 |
+
return output
|
36 |
+
|
37 |
+
# Create a Gradio interface
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
with gr.Tab("Chat"):
|
40 |
+
with gr.Row():
|
41 |
+
language_model_input = gr.Textbox(label="Language Model")
|
42 |
+
query_button = gr.Button("Query HuggingFace Hub")
|
43 |
+
chat_input = gr.Textbox(label="Chat Input")
|
44 |
+
chat_output = gr.Textbox(label="Chat Output")
|
45 |
+
generate_button = gr.Button("Generate Text")
|
46 |
+
|
47 |
+
with gr.Tab("Image Generation"):
|
48 |
+
image_input = gr.Textbox(label="Image Prompt")
|
49 |
+
image_model_input = gr.Textbox(label="Image Model")
|
50 |
+
generate_image_button = gr.Button("Generate Image")
|
51 |
+
image_output = gr.Image(label="Generated Image")
|
52 |
+
|
53 |
+
with gr.Tab("Media Generation"):
|
54 |
+
media_input = gr.Textbox(label="Media Prompt")
|
55 |
+
media_model_input = gr.Textbox(label="Media Model")
|
56 |
+
media_type_input = gr.Radio(label="Media Type", choices=["video", "music"])
|
57 |
+
generate_media_button = gr.Button("Generate Media")
|
58 |
+
media_output = gr.Video(label="Generated Media") if media_type_input == "video" else gr.Audio(label="Generated Media")
|
59 |
+
|
60 |
+
# Query Hugging Face Hub for language models
|
61 |
+
query_button.click(fn=lambda x: [model.modelId for model in api.list_models(filter=x)], inputs=language_model_input, outputs=language_model_input)
|
62 |
+
|
63 |
+
# Generate text with a language model
|
64 |
+
generate_button.click(fn=generate_text, inputs=[language_model_input, chat_input], outputs=chat_output)
|
65 |
+
|
66 |
+
# Generate an image with Stable Diffusion
|
67 |
+
generate_image_button.click(fn=generate_image, inputs=[image_input, image_model_input], outputs=image_output)
|
68 |
+
|
69 |
+
# Generate video or music with other diffusion models
|
70 |
+
generate_media_button.click(fn=generate_media, inputs=[media_input, media_model_input, media_type_input], outputs=media_output)
|
71 |
+
|
72 |
+
demo.launch()
|