{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Fetching 5 files: 100%|██████████| 5/5 [00:00<00:00, 76818.75it/s]\n", " 0%| | 0/50 [01:05\n", " \n", " Your browser does not support the audio element.\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torchaudio\n", "from tangoflux import TangoFluxInference\n", "from IPython.display import Audio\n", "\n", "model = TangoFluxInference(name=\"declare-lab/TangoFlux\")\n", "\n", "\n", "audio = model.generate(\"Hammer slowly hitting the wooden table\", steps=50, duration=10)\n", "\n", "Audio(data=audio, rate=44100)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "torchaudio.save(\"temp.wav\", audio, sample_rate=44100)" ] } ], "metadata": { "kernelspec": { "display_name": "flux", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 2 }