Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import AutoencoderOobleck | |
import torch | |
from transformers import T5EncoderModel, T5TokenizerFast | |
from diffusers import FluxTransformer2DModel | |
from torch import nn | |
from typing import List | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
from diffusers.training_utils import compute_density_for_timestep_sampling | |
import copy | |
import torch.nn.functional as F | |
import numpy as np | |
from tangoflux.model import TangoFlux | |
from huggingface_hub import snapshot_download | |
from tqdm import tqdm | |
from typing import Optional, Union, List | |
from datasets import load_dataset, Audio | |
from math import pi | |
import json | |
import inspect | |
import yaml | |
from safetensors.torch import load_file | |
class TangoFluxInference: | |
def __init__( | |
self, | |
name="declare-lab/TangoFlux", | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
): | |
self.vae = AutoencoderOobleck() | |
paths = snapshot_download(repo_id=name) | |
vae_weights = load_file("{}/vae.safetensors".format(paths)) | |
self.vae.load_state_dict(vae_weights) | |
weights = load_file("{}/tangoflux.safetensors".format(paths)) | |
with open("{}/config.json".format(paths), "r") as f: | |
config = json.load(f) | |
self.model = TangoFlux(config) | |
self.model.load_state_dict(weights, strict=False) | |
# _IncompatibleKeys(missing_keys=['text_encoder.encoder.embed_tokens.weight'], unexpected_keys=[]) this behaviour is expected | |
self.vae.to(device) | |
self.model.to(device) | |
def generate(self, prompt, steps=25, duration=10, guidance_scale=4.5): | |
with torch.no_grad(): | |
latents = self.model.inference_flow( | |
prompt, | |
duration=duration, | |
num_inference_steps=steps, | |
guidance_scale=guidance_scale, | |
) | |
wave = self.vae.decode(latents.transpose(2, 1)).sample.cpu()[0] | |
waveform_end = int(duration * self.vae.config.sampling_rate) | |
wave = wave[:, :waveform_end] | |
return wave | |