File size: 22,509 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import os
import sys
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
import re
import spacy
from config import LOGS_DIR, OUTPUT_DIR
from DepthEstimator import DepthEstimator
from SoundMapper import SoundMapper
from GenerateCaptions import generate_caption
from GenerateCaptions import StreetSoundTextPipeline, ImageAnalyzer


class ProcessVisualizer:
    def __init__(self, image_dir=LOGS_DIR, output_dir=None):
        self.image_dir = image_dir
        self.output_dir = output_dir if output_dir else os.path.join(OUTPUT_DIR, "visualizations")
        os.makedirs(self.output_dir, exist_ok=True)
        
        # Initialize components (but don't load models yet)
        self.depth_estimator = DepthEstimator(image_dir=self.image_dir)
        self.sound_mapper = SoundMapper()
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.dino = None
        self.dino_processor = None
        self.nlp = None
        
        # Create subdirectories for different visualization types
        self.dirs = {
            "bbox_original": os.path.join(self.output_dir, "bbox_original"),
            "bbox_depth": os.path.join(self.output_dir, "bbox_depth"),
            "depth_maps": os.path.join(self.output_dir, "depth_maps"),
            "combined": os.path.join(self.output_dir, "combined")
        }
        
        for dir_path in self.dirs.values():
            os.makedirs(dir_path, exist_ok=True)
            
    def _load_nlp(self):
        if self.nlp is None:
            self.nlp = spacy.load("en_core_web_sm")
        return self.nlp
        
    def _load_dino(self):
        if self.dino is None:
            print("Loading DINO model...")
            self.dino = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(self.device)
            self.dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
        else:
            self.dino = self.dino.to(self.device)
        return self.dino, self.dino_processor
    
    def _unload_dino(self):
        if self.dino is not None:
            self.dino = self.dino.to("cpu")
        torch.cuda.empty_cache()
        
    def detect_nouns(self, caption_text):
        """Extract nouns from caption text for object detection"""
        print("Detecting nouns in caption...")
        nlp = self._load_nlp()
        all_nouns = []
        
        # Extract nouns from sound source descriptions
        pattern = r'\d+\.\s+\*\*([^:]+)\*\*:'
        sources = re.findall(pattern, caption_text)
        for source in sources:
            clean_source = re.sub(r'sounds?|noise[s]?', '', source, flags=re.IGNORECASE).strip()
            if clean_source:
                source_doc = nlp(clean_source)
                for token in source_doc:
                    if token.pos_ == "NOUN" and len(token.text) > 1:
                        all_nouns.append(token.text.lower())
        
        # Extract nouns from general text
        clean_caption = re.sub(r'[*()]', '', caption_text).strip()
        clean_caption = re.sub(r'##\w+', '', clean_caption)
        clean_caption = re.sub(r'\s+', ' ', clean_caption).strip()
        doc = nlp(clean_caption)
        for token in doc:
            if token.pos_ == "NOUN" and len(token.text) > 1:
                if token.text[0].isalpha():
                    all_nouns.append(token.text.lower())

        matches = sorted(set(all_nouns))
        print(f"Detected nouns: {matches}")
        return matches
        
    def detect_objects(self, image_path, caption_text):
        """Detect objects in image based on nouns from caption"""
        print(f"Processing image: {image_path}")
        
        # Extract nouns from caption
        nouns = self.detect_nouns(caption_text)
        if not nouns:
            print("No nouns detected in caption.")
            return None, None
            
        # Load image
        image = Image.open(image_path)
        
        # Load DINO model
        self.dino, self.dino_processor = self._load_dino()
        
        # Filter nouns
        filtered_nouns = []
        for noun in nouns:
            if '##' not in noun and len(noun) > 1 and noun[0].isalpha():
                filtered_nouns.append(noun)
        
        # Create text prompt for DINO
        text_prompt = " . ".join(filtered_nouns)
        print(f"Using text prompt for DINO: {text_prompt}")
        
        # Process image with DINO
        inputs = self.dino_processor(images=image, text=text_prompt, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            outputs = self.dino(**inputs)
            results = self.dino_processor.post_process_grounded_object_detection(
                outputs,
                inputs.input_ids,
                box_threshold=0.25, 
                text_threshold=0.25,
                target_sizes=[image.size[::-1]]
            )
        
        # Clean up to save memory
        self._unload_dino()
        del inputs, outputs
        torch.cuda.empty_cache()
        
        # Process results
        result = results[0]
        labels = result["labels"]
        scores = result["scores"]
        bboxes = result["boxes"]
        
        # Clean labels
        clean_labels = []
        for label in labels:
            clean_label = re.sub(r'##\w+', '', label)
            clean_labels.append(clean_label)
            
        print(f"Detected {len(clean_labels)} objects: {list(zip(clean_labels, scores.tolist()))}")
        
        return clean_labels, bboxes
        
    def estimate_depth(self):
        """Generate depth maps for all images in the directory"""
        print("Estimating depth for all images...")
        depth_maps = self.depth_estimator.estimate_depth(self.image_dir)
        
        # Convert depth maps to normalized grayscale for visualization
        normalized_maps = []
        img_paths = [os.path.join(self.image_dir, f) for f in os.listdir(self.image_dir) 
                    if f.endswith(('.jpg', '.jpeg', '.png'))]
        
        for i, item in enumerate(depth_maps):
            depth_map = item["depth"]
            depth_array = np.array(depth_map)
            normalization = depth_array / 255.0
            
            # Associate source path with depth map
            source_path = img_paths[i] if i < len(img_paths) else f"depth_{i}.jpg"
            filename = os.path.basename(source_path)
            
            # Save grayscale depth map
            depth_path = os.path.join(self.dirs["depth_maps"], f"depth_{filename}")
            depth_map.save(depth_path)
            
            normalized_maps.append({
                "original": depth_map,
                "normalization": normalization,
                "path": depth_path,
                "source_path": source_path
            })
            
        return normalized_maps
        
    def create_histogram_depth_zones(self, depth_map, num_zones=3):
        """Create depth zones based on histogram of depth values"""
        hist, bin_edge = np.histogram(depth_map.flatten(), bins=50, range=(0, 1))
        cumulative = np.cumsum(hist) / np.sum(hist)
        thresholds = [0.0]
        for i in range(1, num_zones):
            target = i / num_zones
            idx = np.argmin(np.abs(cumulative - target))
            thresholds.append(bin_edge[idx + 1])
        thresholds.append(1.0)
        return thresholds
        
    def get_depth_zone(self, bbox, depth_map, num_zones=3):
        """Determine depth zone for a given bounding box"""
        x1, y1, x2, y2 = [int(coord) for coord in bbox]
        
        # Adjust for image dimensions
        height, width = depth_map.shape
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(width, x2), min(height, y2)
        
        # Extract depth ROI
        depth_roi = depth_map[y1:y2, x1:x2]
        if depth_roi.size == 0:
            return num_zones - 1, 1.0  # Default to farthest zone
            
        # Calculate mean depth
        mean_depth = np.mean(depth_roi)
        
        # Determine zone
        thresholds = self.create_histogram_depth_zones(depth_map, num_zones)
        zone = 0
        for i in range(num_zones):
            if thresholds[i] <= mean_depth < thresholds[i+1]:
                zone = i
                break
                
        weight = 1.0 - mean_depth  # Higher weight for closer objects
        return zone, mean_depth
        
    def draw_bounding_boxes(self, image, labels, bboxes, scores=None, depth_zones=None):
        """Draw bounding boxes on image with depth zone information"""
        draw = ImageDraw.Draw(image)
        
        # Try to get a font, fallback to default if not available
        try:
            font = ImageFont.truetype("arial.ttf", 16)
        except IOError:
            try:
                font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 16)
            except:
                font = ImageFont.load_default()
        
        # Store colors as a class attribute for access in modified versions
        self.zone_colors = {
            0: (255, 50, 50),     # Bright red for near
            1: (255, 180, 0),     # Orange for medium
            2: (50, 255, 50)      # Bright green for far
        }
        
        for i, (label, bbox) in enumerate(zip(labels, bboxes)):
            x1, y1, x2, y2 = [int(coord) for coord in bbox]
            
            # Get color based on depth zone if available
            if depth_zones is not None and i < len(depth_zones):
                zone, depth = depth_zones[i]
                color = self.zone_colors.get(zone, (0, 0, 255))
                zone_text = ["near", "medium", "far"][zone]
                label_text = f"{depth:.2f}"
            else:
                color = (255, 50, 50)  # Default bright red
                label_text = label
                
            # Add score if available
            if scores is not None and i < len(scores):
                label_text += f" {scores[i]:.2f}"
                
            # Draw bounding box with thick border for better visibility
            draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
            
            # Calculate text size more reliably
            if hasattr(draw, 'textsize'):
                text_size = draw.textsize(label_text, font=font)
            else:
                # Fallback sizing when textsize is not available
                text_width = len(label_text) * 8  # Approximate 8 pixels per character
                text_height = 20  # Approximate height for readability
                text_size = (text_width, text_height)
            
            # Draw label background with margin
            margin = 2
            text_box = [
                x1 - margin, 
                y1 - text_size[1] - margin,
                x1 + text_size[0] + margin,
                y1 + margin
            ]
            draw.rectangle(text_box, fill=color)
            
            # Draw label text
            draw.text((x1, y1 - text_size[1]), label_text, fill=(255, 255, 255), font=font)
            
        return image
    
    def create_depth_map_visualization(self, depth_map, use_grayscale=True):
        """Create a visualization of the depth map
        
        Args:
            depth_map: Normalized depth map array
            use_grayscale: If True, creates grayscale image; otherwise, uses colored heatmap
            
        Returns:
            PIL Image with depth visualization
        """
        # Normalize depth map to [0, 1]
        normalized_depth = depth_map.copy()
        
        if use_grayscale:
            # Convert to grayscale (multiplying by 255 for better visibility)
            grayscale = (normalized_depth * 255).astype(np.uint8)
            # Convert to RGB for consistent processing with bounding box drawing
            depth_img = Image.fromarray(grayscale).convert('RGB')
        else:
            # Apply colormap (jet)
            colored_depth = (cm.jet(normalized_depth) * 255).astype(np.uint8)
            # Convert to PIL Image (RGB)
            depth_img = Image.fromarray(colored_depth[:, :, :3])
        
        return depth_img
    
    def process_images(self, lat=None, lon=None, single_view=None, save_with_heatmap=False):
        """
        Process all images in the directory or a single view
        
        Args:
            lat: Latitude for caption generation
            lon: Longitude for caption generation
            single_view: Process only specified view if provided
            save_with_heatmap: If True, also saves depth maps as colored heatmaps
        """
        # Get image paths
        if single_view:
            image_paths = [os.path.join(self.image_dir, f"{single_view}.jpg")]
        else:
            image_paths = [os.path.join(self.image_dir, f) for f in os.listdir(self.image_dir) 
                          if f.endswith(('.jpg', '.jpeg', '.png'))]
            
        if not image_paths:
            print(f"No images found in {self.image_dir}")
            return
            
        # Generate depth maps
        depth_maps = self.estimate_depth()
        
        # Process each image
        for i, image_path in enumerate(image_paths):
            image_basename = os.path.basename(image_path)
            view_name = os.path.splitext(image_basename)[0]
            print(f"\nProcessing {view_name} view ({i+1}/{len(image_paths)})...")
            
            # Generate caption if coordinates are provided
            caption_text = None
            analyzer = ImageAnalyzer()
            caption_text = analyzer.analyze_image(image_path)

            if lat and lon:
                view_result = generate_caption(lat, lon, view=view_name, panoramic=False)
                
                if view_result:
                    caption_text = view_result.get("sound_description", "")
                    print(f"Generated caption: {caption_text}")
            
            # Skip if no caption and lat/lon were provided
            if lat and lon and not caption_text:
                print(f"Failed to generate caption for {image_path}, skipping.")
                continue
                
            # Detect objects based on caption
            if caption_text:
                labels, bboxes = self.detect_objects(image_path, caption_text)
            else:
                # If no caption provided, use generic object detection
                print("No caption provided, using predefined nouns for detection...")
                generic_nouns = ["car", "person", "tree", "building", "road", "sign", "window", "door"]
                labels, bboxes = self.detect_objects(image_path, " ".join(generic_nouns))
                
            if  len(labels) == 0 or len(bboxes)==0:
                print(f"No objects detected in {image_path}, skipping.")
                continue
                
            # Find matching depth map
            depth_map_idx = next((idx for idx, data in enumerate(depth_maps) 
                                if os.path.basename(image_path) == os.path.basename(data.get("source_path", ""))), i % len(depth_maps))
            depth_map = depth_maps[depth_map_idx]["normalization"]
            
            # Get depth zones for each detected object
            depth_zones = []
            for bbox in bboxes:
                zone, mean_depth = self.get_depth_zone(bbox, depth_map)
                depth_zones.append((zone, mean_depth))
                
            # Load and process original image
            original_img = Image.open(image_path).convert("RGB")
            bbox_img = original_img.copy()
            
            # Draw bounding boxes on original image
            bbox_img = self.draw_bounding_boxes(bbox_img, labels, bboxes, depth_zones=depth_zones)
            
            # Save image with bounding boxes
            bbox_path = os.path.join(self.dirs["bbox_original"], f"bbox_{image_basename}")
            bbox_img.save(bbox_path)
            print(f"Saved bounding boxes on original image: {bbox_path}")
            
            # Create grayscale depth map for better visibility of bounding boxes
            depth_vis = self.create_depth_map_visualization(depth_map, use_grayscale=True)
            
            # Draw bounding boxes on depth map visualization
            depth_bbox_img = depth_vis.copy()
            depth_bbox_img = self.draw_bounding_boxes(depth_bbox_img, labels, bboxes, depth_zones=depth_zones)
            
            # Draw bounding boxes directly on the original depth map
            # Load the saved grayscale depth map
            original_depth_path = depth_maps[depth_map_idx]["path"]
            original_depth_img = Image.open(original_depth_path).convert('RGB')
            
            # Draw boxes on the original depth map
            original_depth_bbox = original_depth_img.copy()
            original_depth_bbox = self.draw_bounding_boxes(original_depth_bbox, labels, bboxes, depth_zones=depth_zones)
            
            # Save the original depth map with bounding boxes
            original_depth_bbox_path = os.path.join(self.dirs["bbox_depth"], f"orig_depth_bbox_{image_basename}")
            original_depth_bbox.save(original_depth_bbox_path)
            print(f"Saved bounding boxes on original depth map: {original_depth_bbox_path}")
            
            # Save depth map with bounding boxes
            depth_bbox_path = os.path.join(self.dirs["bbox_depth"], f"depth_bbox_{image_basename}")
            depth_bbox_img.save(depth_bbox_path)
            print(f"Saved bounding boxes on depth map: {depth_bbox_path}")
            
            # Also save colored heatmap version if requested
            if save_with_heatmap:
                # Create a heatmap depth visualization
                depth_heatmap = self.create_depth_map_visualization(depth_map, use_grayscale=False)
                depth_heatmap_bbox = depth_heatmap.copy()
                depth_heatmap_bbox = self.draw_bounding_boxes(depth_heatmap_bbox, labels, bboxes, depth_zones=depth_zones)
                
                # Save heatmap version
                heatmap_path = os.path.join(self.dirs["bbox_depth"], f"heatmap_bbox_{image_basename}")
                depth_heatmap_bbox.save(heatmap_path)
                print(f"Saved bounding boxes on depth heatmap: {heatmap_path}")
            
            # Create combined visualization
            # Create a 2x1 grid showing original with bboxes and original depth with bboxes
            combined_width = original_img.width * 2
            combined_height = original_img.height
            combined_img = Image.new('RGB', (combined_width, combined_height))
            
            # Paste images
            combined_img.paste(bbox_img, (0, 0))
            combined_img.paste(original_depth_bbox, (original_img.width, 0))
            
            # Save combined image
            combined_path = os.path.join(self.dirs["combined"], f"combined_{image_basename}")
            combined_img.save(combined_path)
            print(f"Saved combined visualization: {combined_path}")
            
        print("\nVisualization process complete!")
        print(f"Results saved in {self.output_dir}")
        
    def cleanup(self):
        """Clean up resources"""
        if hasattr(self, 'depth_estimator'):
            self.depth_estimator._unload_model()
            
        if self.dino is not None:
            self.dino = self.dino.to("cpu")
            del self.dino
            self.dino = None
            
        if self.nlp is not None:
            del self.nlp
            self.nlp = None
            
        torch.cuda.empty_cache()


def main():
    import argparse
    
    parser = argparse.ArgumentParser(description="Visualize intermediate steps of the Street Sound Pipeline")
    parser.add_argument("--image_dir", type=str, default=LOGS_DIR, help="Directory containing input images")
    parser.add_argument("--output_dir", type=str, default=None, help="Directory for output visualizations")
    parser.add_argument("--location", type=str, default=None, help='Location in format "latitude,longitude" (e.g., "40.7128,-74.0060")')
    parser.add_argument("--view", type=str, default=None, choices=["front", "back", "left", "right"], help="Process only the specified view")
    parser.add_argument("--skip_caption", action="store_true", help="Skip caption generation and use generic noun list")
    parser.add_argument("--save_heatmap", action="store_true", help="Also save depth maps as colored heatmaps with bounding boxes")
    parser.add_argument("--box_width", type=int, default=3, help="Width of bounding box lines")
    
    args = parser.parse_args()
    
    # Parse location if provided
    lat, lon = None, None
    if args.location and not args.skip_caption:
        try:
            lat, lon = map(float, args.location.split(","))
        except ValueError:
            print("Error: Location must be in format 'latitude,longitude'")
            return
    
    # Initialize visualizer
    visualizer = ProcessVisualizer(image_dir=args.image_dir, output_dir=args.output_dir)
    
    # Set box width if provided
    if args.box_width != 3:
        draw_bounding_boxes_orig = visualizer.draw_bounding_boxes
        def draw_bounding_boxes_with_width(*args, **kwargs):
            draw = ImageDraw.Draw(args[0])
            for i, (label, bbox) in enumerate(zip(args[1], args[2])):
                x1, y1, x2, y2 = [int(coord) for coord in bbox]
                depth_zones = kwargs.get('depth_zones')
                if depth_zones is not None and i < len(depth_zones):
                    zone, depth = depth_zones[i]
                    color = draw_bounding_boxes_orig.zone_colors.get(zone, (0, 0, 255))
                else:
                    color = (255, 0, 0)
                draw.rectangle([x1, y1, x2, y2], outline=color, width=args.box_width)
            return draw_bounding_boxes_orig(*args, **kwargs)
        visualizer.draw_bounding_boxes = draw_bounding_boxes_with_width
    
    try:
        # Process images
        visualizer.process_images(lat=lat, lon=lon, single_view=args.view, save_with_heatmap=args.save_heatmap)
    finally:
        # Clean up resources
        visualizer.cleanup()


if __name__ == "__main__":
    main()