Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,007 Bytes
3324de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import argparse
from PIL import Image
import numpy as np
import torch
import torchaudio
import gc
from config import LOGS_DIR, OUTPUT_DIR
from DepthEstimator import DepthEstimator
from SoundMapper import SoundMapper
from GenerateAudio import GenerateAudio
from GenerateCaptions import generate_caption
from audio_mixer import compose_audio
def main():
parser = argparse.ArgumentParser(description="Generate sound from panoramic images")
parser.add_argument("--image_dir", type=str, default=LOGS_DIR, help="Directory containing input images")
parser.add_argument("--output_dir", type=str, default=OUTPUT_DIR, help="Directory for output files")
parser.add_argument("--audio_duration", type=int, default=10, help="Duration of generated audio in seconds")
parser.add_argument("--location", type=str, default="52.3436723,4.8529625", help='Location in format "latitude,longitude" (e.g., "40.7128,-74.0060")')
parser.add_argument("--view", type=str, default="front", choices=["front", "back", "left", "right"], help="Perspective view to analyze")
parser.add_argument("--model", type=str, default="intern_2_5-4B", help="Vision-language model to use for analysis")
parser.add_argument("--cpu_only", action="store_true", help="Force CPU usage even if CUDA is available")
parser.add_argument("--panoramic", action="store_true", default=False,
help="Process panoramic images instead of a single image")
args = parser.parse_args()
lat, lon = args.location.split(",")
os.makedirs(args.output_dir, exist_ok=True)
if args.panoramic:
print("-----------Processing panoramic images-----------")
# Generate captions for all views at once with panoramic=True
view_results = generate_caption(lat, lon, view=args.view, model=args.model,
cpu_only=args.cpu_only, panoramic=True)
if not view_results:
print("Failed to generate captions for panoramic views")
return
sound_mapper = SoundMapper()
processed_maps = sound_mapper.process_depth_maps()
image_paths = [os.path.join(args.image_dir, f) for f in os.listdir(args.image_dir) if f.endswith(".jpg")]
# Create audio generator
audio_generator = GenerateAudio()
sound_tracks_dict = {} # keep track of sound tracks and their weight
# Process each view
for i, view_result in enumerate(view_results):
current_view = view_result["view"]
print(f"Processing {current_view} view ({i+1}/{len(view_results)})")
# Find corresponding image path for this view
image_path = os.path.join(args.image_dir, f"{current_view}.jpg")
if not os.path.exists(image_path):
print(f"Warning: Image file {image_path} not found")
continue
image_index = [idx for idx, path in enumerate(image_paths)
if os.path.basename(path) == f"{current_view}.jpg"]
if not image_index:
print(f"Could not find processed map for {current_view} view")
continue
depth_map = processed_maps[image_index[0]]["normalization"]
object_depths = sound_mapper.analyze_object_depths(
image_path, depth_map, lat, lon,
caption_data=view_result,
all_objects=False
)
if not object_depths:
print(f"No objects detected in the {current_view} view")
continue
# Generate audio for this view
output_path = os.path.join(args.output_dir, f"sound_{current_view}.wav")
print(f"Generating audio for {current_view} view...")
audio, sample_rate = audio_generator.process_and_generate_audio(
object_depths,
duration=args.audio_duration
)
if audio.dim() == 3:
audio = audio.squeeze(0)
elif audio.dim() == 1:
audio = audio.unsqueeze(0)
if audio.dim() != 2:
raise ValueError(f"Could not convert audio tensor of shape {audio.shape} to 2D")
torchaudio.save(
output_path,
audio,
sample_rate
)
if object_depths:
sound_tracks_dict[output_path] = object_depths[0]['weight']
print(f"Generated audio saved to: {output_path}")
print("-" * 50)
if sound_tracks_dict:
print("Composing final audio from all views...")
compose_audio(
list(sound_tracks_dict.keys()),
list(sound_tracks_dict.values()),
os.path.join(args.output_dir, "panoramic_composition.wav")
)
print(f"Final audio composition saved to: {os.path.join(args.output_dir, 'panoramic_composition.wav')}")
torch.cuda.empty_cache()
gc.collect()
del sound_mapper, audio_generator
gc.collect()
torch.cuda.empty_cache()
else:
print("Processing single image...")
view_result = generate_caption(lat, lon, view=args.view, model=args.model,
cpu_only=args.cpu_only, panoramic=False)
if not view_result:
print("Failed to generate caption for the view")
return
image_path = os.path.join(args.image_dir, f"{args.view}.jpg")
if not os.path.exists(image_path):
print(f"Error: Image file {image_path} not found")
return
print(f"Processing image: {image_path}")
sound_mapper = SoundMapper()
processed_maps = sound_mapper.process_depth_maps()
image_paths = [os.path.join(args.image_dir, f) for f in os.listdir(args.image_dir) if f.endswith(".jpg")]
image_basename = os.path.basename(image_path)
image_index = [i for i, path in enumerate(image_paths) if os.path.basename(path) == image_basename]
if not image_index:
print(f"Could not find processed map for {image_basename}")
return
depth_map = processed_maps[image_index[0]]["normalization"]
print("Detecting objects and their depths...")
object_depths = sound_mapper.analyze_object_depths(
image_path, depth_map, lat, lon,
caption_data=view_result,
all_objects=True
)
if not object_depths:
print("No objects detected in the image.")
return
print(f"Detected {len(object_depths)} objects:")
for obj in object_depths:
print(f" - {obj['original_label']} (Zone: {obj['zone_description']}, Depth: {obj['mean_depth']:.4f})")
print("Generating audio...")
audio_generator = GenerateAudio()
audio, sample_rate = audio_generator.process_and_generate_audio(
object_depths,
duration=args.audio_duration
)
if audio.dim() == 3:
audio = audio.squeeze(0)
elif audio.dim() == 1:
audio = audio.unsqueeze(0)
if audio.dim() != 2:
raise ValueError(f"Could not convert audio tensor of shape {audio.shape} to 2D")
output_path = os.path.join(args.output_dir, f"sound_{args.view}.wav")
torchaudio.save(
output_path,
audio,
sample_rate
)
print(f"Generated audio saved to: {output_path}")
if __name__ == "__main__":
main()
# Usage:
#(For single image): python main.py --view front
#(For panoramic images): python main.py --panoramic |