File size: 4,848 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd

import torchaudio
import random
import itertools
import numpy as np


import numpy as np


def normalize_wav(waveform):
    waveform = waveform - torch.mean(waveform)
    waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
    return waveform * 0.5


def pad_wav(waveform, segment_length):
    waveform_length = len(waveform)

    if segment_length is None or waveform_length == segment_length:
        return waveform
    elif waveform_length > segment_length:
        return waveform[:segment_length]
    else:
        padded_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
        waveform = torch.cat([waveform, padded_wav])
        return waveform


def read_wav_file(filename, duration_sec):
    info = torchaudio.info(filename)
    sample_rate = info.sample_rate

    # Calculate the number of frames corresponding to the desired duration
    num_frames = int(sample_rate * duration_sec)

    waveform, sr = torchaudio.load(filename, num_frames=num_frames)  # Faster!!!

    if waveform.shape[0] == 2:  ## Stereo audio
        resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=44100)
        resampled_waveform = resampler(waveform)
        # print(resampled_waveform.shape)
        padded_left = pad_wav(
            resampled_waveform[0], int(44100 * duration_sec)
        )  ## We pad left and right seperately
        padded_right = pad_wav(resampled_waveform[1], int(44100 * duration_sec))

        return torch.stack([padded_left, padded_right])
    else:
        waveform = torchaudio.functional.resample(
            waveform, orig_freq=sr, new_freq=44100
        )[0]
        waveform = pad_wav(waveform, int(44100 * duration_sec)).unsqueeze(0)

        return waveform


class DPOText2AudioDataset(Dataset):
    def __init__(
        self,
        dataset,
        prefix,
        text_column,
        audio_w_column,
        audio_l_column,
        duration,
        num_examples=-1,
    ):

        inputs = list(dataset[text_column])
        self.inputs = [prefix + inp for inp in inputs]
        self.audios_w = list(dataset[audio_w_column])
        self.audios_l = list(dataset[audio_l_column])
        self.durations = list(dataset[duration])
        self.indices = list(range(len(self.inputs)))

        self.mapper = {}
        for index, audio_w, audio_l, duration, text in zip(
            self.indices, self.audios_w, self.audios_l, self.durations, inputs
        ):
            self.mapper[index] = [audio_w, audio_l, duration, text]

        if num_examples != -1:
            self.inputs, self.audios_w, self.audios_l, self.durations = (
                self.inputs[:num_examples],
                self.audios_w[:num_examples],
                self.audios_l[:num_examples],
                self.durations[:num_examples],
            )
            self.indices = self.indices[:num_examples]

    def __len__(self):
        return len(self.inputs)

    def get_num_instances(self):
        return len(self.inputs)

    def __getitem__(self, index):
        s1, s2, s3, s4, s5 = (
            self.inputs[index],
            self.audios_w[index],
            self.audios_l[index],
            self.durations[index],
            self.indices[index],
        )
        return s1, s2, s3, s4, s5

    def collate_fn(self, data):
        dat = pd.DataFrame(data)
        return [dat[i].tolist() for i in dat]


class Text2AudioDataset(Dataset):
    def __init__(
        self, dataset, prefix, text_column, audio_column, duration, num_examples=-1
    ):

        inputs = list(dataset[text_column])
        self.inputs = [prefix + inp for inp in inputs]
        self.audios = list(dataset[audio_column])
        self.durations = list(dataset[duration])
        self.indices = list(range(len(self.inputs)))

        self.mapper = {}
        for index, audio, duration, text in zip(
            self.indices, self.audios, self.durations, inputs
        ):
            self.mapper[index] = [audio, text, duration]

        if num_examples != -1:
            self.inputs, self.audios, self.durations = (
                self.inputs[:num_examples],
                self.audios[:num_examples],
                self.durations[:num_examples],
            )
            self.indices = self.indices[:num_examples]

    def __len__(self):
        return len(self.inputs)

    def get_num_instances(self):
        return len(self.inputs)

    def __getitem__(self, index):
        s1, s2, s3, s4 = (
            self.inputs[index],
            self.audios[index],
            self.durations[index],
            self.indices[index],
        )
        return s1, s2, s3, s4

    def collate_fn(self, data):
        dat = pd.DataFrame(data)
        return [dat[i].tolist() for i in dat]