Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,698 Bytes
3324de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import time
import argparse
import json
import logging
import math
import os
import yaml
from pathlib import Path
import diffusers
import datasets
import numpy as np
import pandas as pd
import wandb
import transformers
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from transformers import SchedulerType, get_scheduler
from model import TangoFlux
from datasets import load_dataset, Audio
from utils import Text2AudioDataset, read_wav_file, pad_wav
from diffusers import AutoencoderOobleck
import torchaudio
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="Rectified flow for text to audio generation task."
)
parser.add_argument(
"--num_examples",
type=int,
default=-1,
help="How many examples to use for training and validation.",
)
parser.add_argument(
"--text_column",
type=str,
default="captions",
help="The name of the column in the datasets containing the input texts.",
)
parser.add_argument(
"--audio_column",
type=str,
default="location",
help="The name of the column in the datasets containing the audio paths.",
)
parser.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_beta2",
type=float,
default=0.95,
help="The beta2 parameter for the Adam optimizer.",
)
parser.add_argument(
"--config",
type=str,
default="tangoflux_config.yaml",
help="Config file defining the model size as well as other hyper parameter.",
)
parser.add_argument(
"--prefix",
type=str,
default="",
help="Add prefix in text prompts.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=3e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay", type=float, default=1e-8, help="Weight decay to use."
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=[
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer",
)
parser.add_argument(
"--adam_weight_decay",
type=float,
default=1e-2,
help="Epsilon value for the Adam optimizer",
)
parser.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default="best",
help="Whether the various states should be saved at the end of every 'epoch' or 'best' whenever validation loss decreases.",
)
parser.add_argument(
"--save_every",
type=int,
default=5,
help="Save model after every how many epochs when checkpointing_steps is set to best.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a local checkpoint folder.",
)
parser.add_argument(
"--load_from_checkpoint",
type=str,
default=None,
help="Whether to continue training from a model weight",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
accelerator_log_kwargs = {}
def load_config(config_path):
with open(config_path, "r") as file:
return yaml.safe_load(file)
config = load_config(args.config)
learning_rate = float(config["training"]["learning_rate"])
num_train_epochs = int(config["training"]["num_train_epochs"])
num_warmup_steps = int(config["training"]["num_warmup_steps"])
per_device_batch_size = int(config["training"]["per_device_batch_size"])
gradient_accumulation_steps = int(config["training"]["gradient_accumulation_steps"])
output_dir = config["paths"]["output_dir"]
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
**accelerator_log_kwargs,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
datasets.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle output directory creation and wandb tracking
if accelerator.is_main_process:
if output_dir is None or output_dir == "":
output_dir = "saved/" + str(int(time.time()))
if not os.path.exists("saved"):
os.makedirs("saved")
os.makedirs(output_dir, exist_ok=True)
elif output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
os.makedirs("{}/{}".format(output_dir, "outputs"), exist_ok=True)
with open("{}/summary.jsonl".format(output_dir), "a") as f:
f.write(json.dumps(dict(vars(args))) + "\n\n")
accelerator.project_configuration.automatic_checkpoint_naming = False
wandb.init(
project="Text to Audio Flow matching",
settings=wandb.Settings(_disable_stats=True),
)
accelerator.wait_for_everyone()
# Get the datasets
data_files = {}
# if args.train_file is not None:
if config["paths"]["train_file"] != "":
data_files["train"] = config["paths"]["train_file"]
# if args.validation_file is not None:
if config["paths"]["val_file"] != "":
data_files["validation"] = config["paths"]["val_file"]
if config["paths"]["test_file"] != "":
data_files["test"] = config["paths"]["test_file"]
else:
data_files["test"] = config["paths"]["val_file"]
extension = "json"
raw_datasets = load_dataset(extension, data_files=data_files)
text_column, audio_column = args.text_column, args.audio_column
model = TangoFlux(config=config["model"])
vae = AutoencoderOobleck.from_pretrained(
"stabilityai/stable-audio-open-1.0", subfolder="vae"
)
## Freeze vae
for param in vae.parameters():
vae.requires_grad = False
vae.eval()
## Freeze text encoder param
for param in model.text_encoder.parameters():
param.requires_grad = False
model.text_encoder.eval()
prefix = args.prefix
with accelerator.main_process_first():
train_dataset = Text2AudioDataset(
raw_datasets["train"],
prefix,
text_column,
audio_column,
"duration",
args.num_examples,
)
eval_dataset = Text2AudioDataset(
raw_datasets["validation"],
prefix,
text_column,
audio_column,
"duration",
args.num_examples,
)
test_dataset = Text2AudioDataset(
raw_datasets["test"],
prefix,
text_column,
audio_column,
"duration",
args.num_examples,
)
accelerator.print(
"Num instances in train: {}, validation: {}, test: {}".format(
train_dataset.get_num_instances(),
eval_dataset.get_num_instances(),
test_dataset.get_num_instances(),
)
)
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
batch_size=config["training"]["per_device_batch_size"],
collate_fn=train_dataset.collate_fn,
)
eval_dataloader = DataLoader(
eval_dataset,
shuffle=True,
batch_size=config["training"]["per_device_batch_size"],
collate_fn=eval_dataset.collate_fn,
)
test_dataloader = DataLoader(
test_dataset,
shuffle=False,
batch_size=config["training"]["per_device_batch_size"],
collate_fn=test_dataset.collate_fn,
)
# Optimizer
optimizer_parameters = list(model.transformer.parameters()) + list(
model.fc.parameters()
)
num_trainable_parameters = sum(
p.numel() for p in model.parameters() if p.requires_grad
)
accelerator.print("Num trainable parameters: {}".format(num_trainable_parameters))
if args.load_from_checkpoint:
from safetensors.torch import load_file
w1 = load_file(args.load_from_checkpoint)
model.load_state_dict(w1, strict=False)
logger.info("Weights loaded from{}".format(args.load_from_checkpoint))
optimizer = torch.optim.AdamW(
optimizer_parameters,
lr=learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
if args.max_train_steps is None:
args.max_train_steps = num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=num_warmup_steps
* gradient_accumulation_steps
* accelerator.num_processes,
num_training_steps=args.max_train_steps * gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
vae, model, optimizer, lr_scheduler = accelerator.prepare(
vae, model, optimizer, lr_scheduler
)
train_dataloader, eval_dataloader, test_dataloader = accelerator.prepare(
train_dataloader, eval_dataloader, test_dataloader
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
if overrode_max_train_steps:
args.max_train_steps = num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
# Train!
total_batch_size = (
per_device_batch_size * accelerator.num_processes * gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {per_device_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
resume_from_checkpoint = config["paths"]["resume_from_checkpoint"]
if resume_from_checkpoint != "":
accelerator.load_state(resume_from_checkpoint)
accelerator.print(f"Resumed from local checkpoint: {resume_from_checkpoint}")
# Duration of the audio clips in seconds
best_loss = np.inf
length = config["training"]["max_audio_duration"]
for epoch in range(starting_epoch, num_train_epochs):
model.train()
total_loss, total_val_loss = 0, 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
optimizer.zero_grad()
device = model.device
text, audios, duration, _ = batch
with torch.no_grad():
audio_list = []
for audio_path in audios:
wav = read_wav_file(
audio_path, length
) ## Only read the first 30 seconds of audio
if (
wav.shape[0] == 1
): ## If this audio is mono, we repeat the channel so it become "fake stereo"
wav = wav.repeat(2, 1)
audio_list.append(wav)
audio_input = torch.stack(audio_list, dim=0)
audio_input = audio_input.to(device)
unwrapped_vae = accelerator.unwrap_model(vae)
duration = torch.tensor(duration, device=device)
duration = torch.clamp(
duration, max=length
) ## clamp duration to max audio length
audio_latent = unwrapped_vae.encode(
audio_input
).latent_dist.sample()
audio_latent = audio_latent.transpose(
1, 2
) ## Tranpose to (bsz, seq_len, channel)
loss, _, _, _ = model(audio_latent, text, duration=duration)
total_loss += loss.detach().float()
accelerator.backward(loss)
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
optimizer.step()
lr_scheduler.step()
if completed_steps % 10 == 0 and accelerator.is_main_process:
total_norm = 0.0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm**0.5
logger.info(
f"Step {completed_steps}, Loss: {loss.item()}, Grad Norm: {total_norm}"
)
lr = lr_scheduler.get_last_lr()[0]
result = {
"train_loss": loss.item(),
"grad_norm": total_norm,
"learning_rate": lr,
}
# result["val_loss"] = round(total_val_loss.item()/len(eval_dataloader), 4)
wandb.log(result, step=completed_steps)
# Checks if the accelerator has performed an optimization step behind the scenes
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if output_dir is not None:
output_dir = os.path.join(output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
eval_progress_bar = tqdm(
range(len(eval_dataloader)), disable=not accelerator.is_local_main_process
)
for step, batch in enumerate(eval_dataloader):
with accelerator.accumulate(model) and torch.no_grad():
device = model.device
text, audios, duration, _ = batch
audio_list = []
for audio_path in audios:
wav = read_wav_file(
audio_path, length
) ## make sure none of audio exceed 30 sec
if (
wav.shape[0] == 1
): ## If this audio is mono, we repeat the channel so it become "fake stereo"
wav = wav.repeat(2, 1)
audio_list.append(wav)
audio_input = torch.stack(audio_list, dim=0)
audio_input = audio_input.to(device)
duration = torch.tensor(duration, device=device)
unwrapped_vae = accelerator.unwrap_model(vae)
audio_latent = unwrapped_vae.encode(audio_input).latent_dist.sample()
audio_latent = audio_latent.transpose(
1, 2
) ## Tranpose to (bsz, seq_len, channel)
val_loss, _, _, _ = model(audio_latent, text, duration=duration)
total_val_loss += val_loss.detach().float()
eval_progress_bar.update(1)
if accelerator.is_main_process:
result = {}
result["epoch"] = float(epoch + 1)
result["epoch/train_loss"] = round(
total_loss.item() / len(train_dataloader), 4
)
result["epoch/val_loss"] = round(
total_val_loss.item() / len(eval_dataloader), 4
)
wandb.log(result, step=completed_steps)
result_string = "Epoch: {}, Loss Train: {}, Val: {}\n".format(
epoch, result["epoch/train_loss"], result["epoch/val_loss"]
)
accelerator.print(result_string)
with open("{}/summary.jsonl".format(output_dir), "a") as f:
f.write(json.dumps(result) + "\n\n")
logger.info(result)
if result["epoch/val_loss"] < best_loss:
best_loss = result["epoch/val_loss"]
save_checkpoint = True
else:
save_checkpoint = False
accelerator.wait_for_everyone()
if accelerator.is_main_process and args.checkpointing_steps == "best":
if save_checkpoint:
accelerator.save_state("{}/{}".format(output_dir, "best"))
if (epoch + 1) % args.save_every == 0:
accelerator.save_state(
"{}/{}".format(output_dir, "epoch_" + str(epoch + 1))
)
if accelerator.is_main_process and args.checkpointing_steps == "epoch":
accelerator.save_state(
"{}/{}".format(output_dir, "epoch_" + str(epoch + 1))
)
if __name__ == "__main__":
main()
|