File size: 6,628 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import json
import time
import torch
import argparse
import multiprocessing
from tqdm import tqdm
from safetensors.torch import load_file
from diffusers import AutoencoderOobleck
import soundfile as sf
from model import TangoFlux
import random




def generate_audio_chunk(args, chunk, gpu_id, output_dir, samplerate, return_dict, process_id):
    """
    Function to generate audio for a chunk of text prompts on a specific GPU.
    """
    try:
        device = f"cuda:{gpu_id}"
        torch.cuda.set_device(device)
        print(f"Process {process_id}: Using device {device}")

        # Initialize model
        config = {
        'num_layers': 6,
        'num_single_layers': 18,
        'in_channels': 64,
        'attention_head_dim': 128,
        'joint_attention_dim': 1024,
        'num_attention_heads': 8,
        'audio_seq_len': 645,
        'max_duration': 30,
        'uncondition': False,
        'text_encoder_name': "google/flan-t5-large"
        }   

        model = TangoFlux(config)
        print(f"Process {process_id}: Loading model from {args.model} on {device}")
        w1 = load_file(args.model)
        model.load_state_dict(w1, strict=False)
        model = model.to(device)
        model.eval()

        # Initialize VAE
        vae = AutoencoderOobleck.from_pretrained("stabilityai/stable-audio-open-1.0", subfolder='vae')
        vae = vae.to(device)
        vae.eval()

        outputs = []

        # Corrected loop using enumerate properly with tqdm
        for idx, item in tqdm(enumerate(chunk), total=len(chunk), desc=f"GPU {gpu_id}"):
            text = item['captions']
            

            if os.path.exists(os.path.join(output_dir, f"id_{item['id']}_sample1.wav")):
                print("Exist! Skipping!")
                continue
            with torch.no_grad():
                latent = model.inference_flow(
                    text,
                    num_inference_steps=args.num_steps,
                    guidance_scale=args.guidance_scale,
                    duration=10,
                    num_samples_per_prompt=args.num_samples
                )
               
                #waveform_end = int(duration * vae.config.sampling_rate)
                latent = latent[:, :220, :]   ## 220 correspond to the latent length of audiocaps encoded with this vae. You can modify this 
                wave = vae.decode(latent.transpose(2, 1)).sample.cpu()

                for i in range(args.num_samples):
                    filename = f"id_{item['id']}_sample{i+1}.wav"
                    filepath = os.path.join(output_dir, filename)

                    sf.write(filepath, wave[i].T, samplerate)
                    outputs.append({
                        "id": item['id'],
                        "sample": i + 1,
                        "path": filepath,
                        "captions": text
                    })

        return_dict[process_id] = outputs
        print(f"Process {process_id}: Completed processing on GPU {gpu_id}")

    except Exception as e:
        print(f"Process {process_id}: Error on GPU {gpu_id}: {e}")
        return_dict[process_id] = []

def split_into_chunks(data, num_chunks):
    """
    Splits data into num_chunks approximately equal parts.
    """
    avg = len(data) // num_chunks
    chunks = []
    for i in range(num_chunks):
        start = i * avg
        # Ensure the last chunk takes the remainder
        end = (i + 1) * avg if i != num_chunks - 1 else len(data)
        chunks.append(data[start:end])
    return chunks

def main():
    parser = argparse.ArgumentParser(description="Generate audio using multiple GPUs")
    parser.add_argument('--num_steps', type=int, default=50, help='Number of inference steps')
    parser.add_argument('--model', type=str, required=True, help='Path to tangoflux weights')
    parser.add_argument('--num_samples', type=int, default=5, help='Number of samples per prompt')
    parser.add_argument('--output_dir', type=str, default='output', help='Directory to save outputs')
    parser.add_argument('--json_path', type=str, required=True, help='Path to input JSON file')
    parser.add_argument('--sample_size', type=int, default=20000, help='Number of prompts to sample for CRPO')
    parser.add_argument('--guidance_scale', type=float, default=4.5, help='Guidance scale used for generation')
    args = parser.parse_args()

    # Check GPU availability 
    num_gpus = torch.cuda.device_count()
    sample_size = args.sample_size
    

    # Load JSON data
    import json
    try:
        with open(args.json_path, 'r') as f:
            data = json.load(f)
        
    except Exception as e:
        print(f"Error loading JSON file {args.json_path}: {e}")
        return

    if not isinstance(data, list):
        print("Error: JSON data is not a list.")
        return

    if len(data) < sample_size:
        print(f"Warning: JSON data contains only {len(data)} items. Sampling all available data.")
        sampled = data
    else:
        sampled = random.sample(data, sample_size)

    # Split data into chunks based on available GPUs
    random.shuffle(sampled)
    chunks = split_into_chunks(sampled, num_gpus)

    # Prepare output directory
    os.makedirs(args.output_dir, exist_ok=True)
    samplerate = 44100

    # Manager for inter-process communication
    manager = multiprocessing.Manager()
    return_dict = manager.dict()

    processes = []
    for i in range(num_gpus):
        p = multiprocessing.Process(
            target=generate_audio_chunk,
            args=(
                args,
                chunks[i],
                i,  # GPU ID
                args.output_dir,
                samplerate,
                return_dict,
                i,  # Process ID
               
            )
        )
        processes.append(p)
        p.start()
        print(f"Started process {i} on GPU {i}")

    for p in processes:
        p.join()
        print(f"Process {p.pid} has finished.")

    # Aggregate results
    
    

    


    audio_info_list = [
        [{
            "path": f"{args.output_dir}/id_{sampled[j]['id']}_sample{i}.wav",
            "duration": sampled[j]["duration"],
            "captions": sampled[j]["captions"]
        }
        for i in range(1, args.num_samples+1) ] for j in range(sample_size)
    ]

    #print(audio_info_list)

    with open(f'{args.output_dir}/results.json','w') as f:
        json.dump(audio_info_list,f)
        
    print(f"All audio samples have been generated and saved to {args.output_dir}")


if __name__ == "__main__":
    multiprocessing.set_start_method('spawn')
    main()