File size: 9,697 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import logging
import json
import random
import torch
import torchaudio
import re

from diffusers import AutoencoderOobleck, FluxTransformer2DModel
from huggingface_hub import snapshot_download

from comfy.utils import load_torch_file, ProgressBar
import folder_paths

from tangoflux.model import TangoFlux
from .teacache import teacache_forward

log = logging.getLogger("TangoFlux")

TANGOFLUX_DIR = os.path.join(folder_paths.models_dir, "tangoflux")
if "tangoflux" not in folder_paths.folder_names_and_paths:
    current_paths = [TANGOFLUX_DIR]
else:
    current_paths, _ = folder_paths.folder_names_and_paths["tangoflux"]
folder_paths.folder_names_and_paths["tangoflux"] = (
    current_paths,
    folder_paths.supported_pt_extensions,
)
TEXT_ENCODER_DIR = os.path.join(folder_paths.models_dir, "text_encoders")


class TangoFluxLoader:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "enable_teacache": ("BOOLEAN", {"default": False}),
                "rel_l1_thresh": (
                    "FLOAT",
                    {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.01},
                ),
            },
        }

    RETURN_TYPES = ("TANGOFLUX_MODEL", "TANGOFLUX_VAE")
    RETURN_NAMES = ("model", "vae")
    OUTPUT_TOOLTIPS = ("TangoFlux Model", "TangoFlux Vae")

    CATEGORY = "TangoFlux"
    FUNCTION = "load_tangoflux"
    DESCRIPTION = "Load TangoFlux model"

    def __init__(self):
        self.model = None
        self.vae = None
        self.enable_teacache = False
        self.rel_l1_thresh = 0.25
        self.original_forward = FluxTransformer2DModel.forward

    def load_tangoflux(
        self,
        enable_teacache=False,
        rel_l1_thresh=0.25,
        tangoflux_path=TANGOFLUX_DIR,
        text_encoder_path=TEXT_ENCODER_DIR,
        device="cuda",
    ):
        if self.model is None or self.enable_teacache != enable_teacache:

            pbar = ProgressBar(6)

            snapshot_download(
                repo_id="declare-lab/TangoFlux",
                allow_patterns=["*.json", "*.safetensors"],
                local_dir=tangoflux_path,
                local_dir_use_symlinks=False,
            )

            pbar.update(1)

            log.info("Loading config")

            with open(os.path.join(tangoflux_path, "config.json"), "r") as f:
                config = json.load(f)

            pbar.update(1)

            text_encoder = re.sub(
                r'[<>:"/\\|?*]',
                "-",
                config.get("text_encoder_name", "google/flan-t5-large"),
            )
            text_encoder_path = os.path.join(text_encoder_path, text_encoder)

            snapshot_download(
                repo_id=config.get("text_encoder_name", "google/flan-t5-large"),
                allow_patterns=["*.json", "*.safetensors", "*.model"],
                local_dir=text_encoder_path,
                local_dir_use_symlinks=False,
            )

            pbar.update(1)

            log.info("Loading TangoFlux models")
            
            del self.model
            self.model = None

            model_weights = load_torch_file(
                os.path.join(tangoflux_path, "tangoflux.safetensors"),
                device=torch.device(device),
            )

            pbar.update(1)

            if enable_teacache:
                log.info("Enabling TeaCache")
                FluxTransformer2DModel.forward = teacache_forward
            else:
                log.info("Disabling TeaCache")
                FluxTransformer2DModel.forward = self.original_forward

            model = TangoFlux(config=config, text_encoder_dir=text_encoder_path)

            model.load_state_dict(model_weights, strict=False)
            model.to(device)

            if enable_teacache:
                model.transformer.__class__.enable_teacache = True
                model.transformer.__class__.cnt = 0
                model.transformer.__class__.rel_l1_thresh = rel_l1_thresh
                model.transformer.__class__.accumulated_rel_l1_distance = 0
                model.transformer.__class__.previous_modulated_input = None
                model.transformer.__class__.previous_residual = None

            pbar.update(1)

            self.model = model
            del model
            self.enable_teacache = enable_teacache
            self.rel_l1_thresh = rel_l1_thresh

            if self.vae is None:
                log.info("Loading TangoFlux VAE")

                vae_weights = load_torch_file(
                    os.path.join(tangoflux_path, "vae.safetensors")
                )
                self.vae = AutoencoderOobleck()
                self.vae.load_state_dict(vae_weights)
                self.vae.to(device)

            pbar.update(1)

        if self.enable_teacache == True and self.rel_l1_thresh != rel_l1_thresh:
            self.model.transformer.__class__.rel_l1_thresh = rel_l1_thresh

            self.rel_l1_thresh = rel_l1_thresh

        return (self.model, self.vae)


class TangoFluxSampler:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "model": ("TANGOFLUX_MODEL",),
                "prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
                "steps": ("INT", {"default": 50, "min": 1, "max": 10000, "step": 1}),
                "guidance_scale": (
                    "FLOAT",
                    {"default": 3, "min": 1, "max": 100, "step": 1},
                ),
                "duration": ("INT", {"default": 10, "min": 1, "max": 30, "step": 1}),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}),
                "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
            },
        }

    RETURN_TYPES = ("TANGOFLUX_LATENTS",)
    RETURN_NAMES = ("latents",)
    OUTPUT_TOOLTIPS = "TangoFlux Sample"

    CATEGORY = "TangoFlux"
    FUNCTION = "sample"
    DESCRIPTION = "Sampler for TangoFlux"

    def sample(
        self,
        model,
        prompt,
        steps=50,
        guidance_scale=3,
        duration=10,
        seed=0,
        batch_size=1,
        device="cuda",
    ):
        pbar = ProgressBar(steps)

        with torch.no_grad():
            model.to(device)

            try:
                if model.transformer.__class__.enable_teacache:
                    model.transformer.__class__.num_steps = steps
            except:
                pass

            log.info("Generating latents with TangoFlux")

            latents = model.inference_flow(
                prompt,
                duration=duration,
                num_inference_steps=steps,
                guidance_scale=guidance_scale,
                seed=seed,
                num_samples_per_prompt=batch_size,
                callback_on_step_end=lambda: pbar.update(1),
            )

        return ({"latents": latents, "duration": duration},)


class TangoFluxVAEDecodeAndPlay:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "vae": ("TANGOFLUX_VAE",),
                "latents": ("TANGOFLUX_LATENTS",),
                "filename_prefix": ("STRING", {"default": "TangoFlux"}),
                "format": (
                    ["wav", "mp3", "flac", "aac", "wma"],
                    {"default": "wav"},
                ),
                "save_output": ("BOOLEAN", {"default": True}),
            },
        }

    RETURN_TYPES = ()
    OUTPUT_NODE = True

    CATEGORY = "TangoFlux"
    FUNCTION = "play"
    DESCRIPTION = "Decoder and Player for TangoFlux"

    def decode(self, vae, latents):
        results = []

        for latent in latents:
            decoded = vae.decode(latent.unsqueeze(0).transpose(2, 1)).sample.cpu()
            results.append(decoded)

        results = torch.cat(results, dim=0)

        return results

    def play(
        self,
        vae,
        latents,
        filename_prefix="TangoFlux",
        format="wav",
        save_output=True,
        device="cuda",
    ):
        audios = []
        pbar = ProgressBar(len(latents) + 2)

        if save_output:
            output_dir = folder_paths.get_output_directory()
            prefix_append = ""
            type = "output"
        else:
            output_dir = folder_paths.get_temp_directory()
            prefix_append = "_temp_" + "".join(
                random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)
            )
            type = "temp"

        filename_prefix += prefix_append
        full_output_folder, filename, counter, subfolder, _ = (
            folder_paths.get_save_image_path(filename_prefix, output_dir)
        )

        os.makedirs(full_output_folder, exist_ok=True)

        pbar.update(1)

        duration = latents["duration"]
        latents = latents["latents"]

        vae.to(device)

        log.info("Decoding Tangoflux latents")

        waves = self.decode(vae, latents)

        pbar.update(1)

        for wave in waves:
            waveform_end = int(duration * vae.config.sampling_rate)
            wave = wave[:, :waveform_end]

            file = f"{filename}_{counter:05}_.{format}"

            torchaudio.save(
                os.path.join(full_output_folder, file), wave, sample_rate=44100
            )

            counter += 1

            audios.append({"filename": file, "subfolder": subfolder, "type": type})

            pbar.update(1)

        return {
            "ui": {"audios": audios},
        }


NODE_CLASS_MAPPINGS = {
    "TangoFluxLoader": TangoFluxLoader,
    "TangoFluxSampler": TangoFluxSampler,
    "TangoFluxVAEDecodeAndPlay": TangoFluxVAEDecodeAndPlay,
}