File size: 14,823 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
import matplotlib.pyplot as plt
import os
from typing import List, Tuple
from config import LOGS_DIR



##Some utils:
def load_audio_files(file_paths: List[str]) -> List[Tuple[torch.Tensor, int]]:
    """
    Load multiple audio files and ensure they have the same length.
    
    Args:
        file_paths: List of paths to audio files
    
    Returns:
        List of tuples containing audio data and sample rate
    """
    audio_data = []
    
    for path in file_paths:
        # Load audio file
        waveform, sample_rate = torchaudio.load(path)
        # Convert to mono if stereo
        if waveform.shape[0] > 1:
            waveform = torch.mean(waveform, dim=0, keepdim=True)
        audio_data.append((waveform.squeeze(), sample_rate))
    
    # Verify all audio files have the same length and sample rate
    lengths = [len(audio) for audio, _ in audio_data]
    sample_rates = [sr for _, sr in audio_data]
    
    if len(set(lengths)) > 1:
        raise ValueError(f"Audio files have different lengths: {lengths}")
    if len(set(sample_rates)) > 1:
        raise ValueError(f"Audio files have different sample rates: {sample_rates}")
    
    return audio_data


def normalize_audio_volumes(audio_data: List[Tuple[torch.Tensor, int]]) -> List[Tuple[torch.Tensor, int]]:
    """
    Normalize the volume of each audio file to have the same energy level.
    
    Args:
        audio_data: List of tuples containing audio data and sample rate
    
    Returns:
        List of tuples containing normalized audio data and sample rate
    """
    normalized_data = []
    
    # Calculate RMS (Root Mean Square) for each audio
    rms_values = []
    for audio, sr in audio_data:
        # Calculate energy (squared amplitude)
        energy = torch.mean(audio ** 2)
        # Calculate RMS (square root of mean energy)
        rms = torch.sqrt(energy)
        rms_values.append(rms)
    
    # Find the target RMS (we'll use the median to avoid outliers)
    target_rms = torch.median(torch.tensor(rms_values))
    
    # Normalize each audio to the target RMS
    for (audio, sr), rms in zip(audio_data, rms_values):
        if rms > 0:  # Avoid division by zero
            # Calculate scaling factor
            scaling_factor = target_rms / rms
            # Apply scaling
            normalized_audio = audio * scaling_factor
        else:
            normalized_audio = audio
            
        normalized_data.append((normalized_audio, sr))
    
    return normalized_data

def plot_energy_comparison(original_metrics: List[dict], normalized_metrics: List[dict], file_names: List[str], output_path: str = "./logs/energy_comparison.png") -> None:
    """
    Plot a comparison of energy metrics before and after normalization.
    
    Args:
        original_metrics: List of dictionaries containing metrics for original audio
        normalized_metrics: List of dictionaries containing metrics for normalized audio
        file_names: List of audio file names
        output_path: Path to save the plot
    """
    fig, axs = plt.subplots(2, 2, figsize=(14, 10))
    
    # Extract metrics
    orig_rms = [m['rms'] for m in original_metrics]
    norm_rms = [m['rms'] for m in normalized_metrics]
    
    orig_peak = [m['peak'] for m in original_metrics]
    norm_peak = [m['peak'] for m in normalized_metrics]
    
    orig_dr = [m['dynamic_range_db'] for m in original_metrics]
    norm_dr = [m['dynamic_range_db'] for m in normalized_metrics]
    
    orig_cf = [m['crest_factor'] for m in original_metrics]
    norm_cf = [m['crest_factor'] for m in normalized_metrics]
    
    # Prepare x-axis
    x = np.arange(len(file_names))
    width = 0.35
    
    # Plot RMS (volume)
    axs[0, 0].bar(x - width/2, orig_rms, width, label='Original')
    axs[0, 0].bar(x + width/2, norm_rms, width, label='Normalized')
    axs[0, 0].set_title('RMS Energy (Volume)')
    axs[0, 0].set_xticks(x)
    axs[0, 0].set_xticklabels(file_names, rotation=45, ha='right')
    axs[0, 0].set_ylabel('RMS Value')
    axs[0, 0].legend()
    
    # Plot Peak Amplitude
    axs[0, 1].bar(x - width/2, orig_peak, width, label='Original')
    axs[0, 1].bar(x + width/2, norm_peak, width, label='Normalized')
    axs[0, 1].set_title('Peak Amplitude')
    axs[0, 1].set_xticks(x)
    axs[0, 1].set_xticklabels(file_names, rotation=45, ha='right')
    axs[0, 1].set_ylabel('Peak Value')
    axs[0, 1].legend()
    
    # Plot Dynamic Range
    axs[1, 0].bar(x - width/2, orig_dr, width, label='Original')
    axs[1, 0].bar(x + width/2, norm_dr, width, label='Normalized')
    axs[1, 0].set_title('Dynamic Range (dB)')
    axs[1, 0].set_xticks(x)
    axs[1, 0].set_xticklabels(file_names, rotation=45, ha='right')
    axs[1, 0].set_ylabel('dB')
    axs[1, 0].legend()
    
    # Plot Crest Factor
    axs[1, 1].bar(x - width/2, orig_cf, width, label='Original')
    axs[1, 1].bar(x + width/2, norm_cf, width, label='Normalized')
    axs[1, 1].set_title('Crest Factor (Peak-to-RMS Ratio)')
    axs[1, 1].set_xticks(x)
    axs[1, 1].set_xticklabels(file_names, rotation=45, ha='right')
    axs[1, 1].set_ylabel('Ratio')
    axs[1, 1].legend()
    
    plt.tight_layout()
    
    # Create directory if it doesn't exist
    os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
    
    # Save the plot
    plt.savefig(output_path)
    plt.close()

def calculate_audio_metrics(audio_data: List[Tuple[torch.Tensor, int]]) -> List[dict]:
    """
    Calculate various audio metrics for each audio file.
    
    Args:
        audio_data: List of tuples containing audio data and sample rate
    
    Returns:
        List of dictionaries containing metrics
    """
    metrics = []
    
    for audio, sr in audio_data:
        # Calculate RMS (Root Mean Square)
        energy = torch.mean(audio ** 2)
        rms = torch.sqrt(energy)
        
        # Calculate peak amplitude
        peak = torch.max(torch.abs(audio))
        
        # Calculate dynamic range
        if torch.min(torch.abs(audio[audio != 0])) > 0:
            min_non_zero = torch.min(torch.abs(audio[audio != 0]))
            dynamic_range_db = 20 * torch.log10(peak / min_non_zero)
        else:
            dynamic_range_db = torch.tensor(float('inf'))
        
        # Calculate crest factor (peak to RMS ratio)
        crest_factor = peak / rms if rms > 0 else torch.tensor(float('inf'))
        
        metrics.append({
            'rms': rms.item(),
            'peak': peak.item(),
            'dynamic_range_db': dynamic_range_db.item() if not torch.isinf(dynamic_range_db) else float('inf'),
            'crest_factor': crest_factor.item() if not torch.isinf(crest_factor) else float('inf')
        })
    
    return metrics


def create_weighted_composite(
    audio_data: List[Tuple[torch.Tensor, int]],
    weights: List[float]
) -> torch.Tensor:
    """
    Create a weighted composite of multiple audio files.
    
    Args:
        audio_data: List of tuples containing audio data and sample rate
        weights: List of weights for each audio file
    
    Returns:
        Weighted composite audio data
    """
    if len(audio_data) != len(weights):
        raise ValueError("Number of audio files and weights must match")
    
    # Normalize weights to sum to 1
    weights = torch.tensor(weights) / sum(weights)
    
    # Initialize composite audio with zeros
    composite = torch.zeros_like(audio_data[0][0])
    
    # Add weighted audio data
    for (audio, _), weight in zip(audio_data, weights):
        composite += audio * weight
    
    # Normalize to prevent clipping
    max_val = torch.max(torch.abs(composite))
    if max_val > 1.0:
        composite = composite / max_val
        
    return composite


def create_melspectrograms(
    audio_data: List[Tuple[torch.Tensor, int]],
    composite: torch.Tensor,
    sr: int
) -> List[torch.Tensor]:
    """
    Create melspectrograms for individual audio files and the composite.
    
    Args:
        audio_data: List of tuples containing audio data and sample rate
        composite: Composite audio data
        sr: Sample rate
    
    Returns:
        List of melspectrogram data
    """
    specs = []
    
    # Create mel spectrogram transform
    mel_transform = T.MelSpectrogram(
        sample_rate=sr,
        n_fft=2048,
        win_length=2048,
        hop_length=512,
        n_mels=128,
        f_max=8000
    )
    
    # Generate spectrograms for individual audio files
    for audio, _ in audio_data:
        melspec = mel_transform(audio)
        specs.append(melspec)
    
    # Generate spectrogram for composite audio
    composite_melspec = mel_transform(composite)
    specs.append(composite_melspec)
    
    return specs


def plot_melspectrograms(
    specs: List[torch.Tensor],
    sr: int,
    file_names: List[str],
    weights: List[float],
    output_path: str = "melspectrograms.png"
) -> None:
    """
    Plot melspectrograms for individual audio files and the composite.
    
    Args:
        specs: List of melspectrogram data
        sr: Sample rate
        file_names: List of audio file names
        weights: List of weights for each audio file
        output_path: Path to save the plot
    """
    fig, axs = plt.subplots(len(specs), 1, figsize=(12, 4 * len(specs)))
    
    # Create labels for the plots
    labels = [f"{name} (weight: {weight:.2f})" for name, weight in zip(file_names, weights)]
    labels.append("Composite.wav")
    
    # Convert to dB scale (similar to librosa's power_to_db)
    def power_to_db(spec):
        return 10 * torch.log10(spec + 1e-10)
    
    # Plot each melspectrogram
    for i, (spec, label) in enumerate(zip(specs, labels)):
        spec_db = power_to_db(spec).numpy().squeeze()
        
        # For single subplot case
        if len(specs) == 1:
            ax = axs
        else:
            ax = axs[i]
            
        img = ax.imshow(
            spec_db,
            aspect='auto',
            origin='lower',
            interpolation='none',
            extent=[0, spec_db.shape[1], 0, sr/2]
        )
        ax.set_title(label)
        ax.set_ylabel('Frequency (Hz)')
        ax.set_xlabel('Time Frames')
        
    # No colorbar as requested
        
    plt.tight_layout()
    
    # Create directory if it doesn't exist
    os.makedirs(os.path.dirname(output_path) or '.', exist_ok=True)
    # Save the plot
    plt.savefig(output_path,dpi=300)
    plt.close()


def compose_audio(
    file_paths: List[str],
    weights: List[float],
    output_audio_path: str = os.path.join(LOGS_DIR, "composite.wav"),
    output_plot_path: str = os.path.join(LOGS_DIR, "plot/melspectrograms.png"),
    energy_plot_path: str = os.path.join(LOGS_DIR, "plot/energy_comparison.png")
) -> None:
    """
    Main function to process audio files and create visualizations.
    
    Args:
        file_paths: List of paths to audio files (supports 4 audio files)
        weights: List of weights for each audio file
        output_audio_path: Path to save the composite audio
        output_plot_path: Path to save the melspectrogram plot
        energy_plot_path: Path to save the energy comparison plot
    """
    # Load audio files
    audio_data = load_audio_files(file_paths)
    
    # # Calculate metrics for original audio
    print("Calculating metrics for original audio...")
    original_metrics = calculate_audio_metrics(audio_data)
    
    # Normalize audio volumes to have same energy level
    print("Normalizing audio volumes...")
    normalized_audio_data = normalize_audio_volumes(audio_data)
    
    # Calculate metrics for normalized audio
    print("Calculating metrics for normalized audio...")
    normalized_metrics = calculate_audio_metrics(normalized_audio_data)
    
    # Print energy comparison
    print("\nAudio Energy Comparison (RMS values):")
    print("-" * 50)
    print(f"{'File':<20} {'Original':<15} {'Normalized':<15} {'Scaling Factor':<15}")
    print("-" * 50)
    for i, path in enumerate(file_paths):
        file_name = path.split("/")[-1]
        orig_rms = original_metrics[i]['rms']
        norm_rms = normalized_metrics[i]['rms']
        scaling = norm_rms / orig_rms if orig_rms > 0 else float('inf')
        print(f"{file_name[:20]:<20} {orig_rms:<15.6f} {norm_rms:<15.6f} {scaling:<15.6f}")
    
    # Create energy comparison plot
    print("\nCreating energy comparison plot...")
    file_names = [path.split("/")[-1] for path in file_paths]
    plot_energy_comparison(original_metrics, normalized_metrics, file_names, energy_plot_path)
    
    # Get sample rate (all files have the same sample rate)
    sr = normalized_audio_data[0][1]
    
    # Create weighted composite
    print("\nCreating weighted composite...")
    composite = create_weighted_composite(normalized_audio_data, weights)
    
    # Create directory if it doesn't exist
    os.makedirs(os.path.dirname(output_audio_path) or '.', exist_ok=True)
    
    # Save composite audio
    print("Saving composite audio...")
    torchaudio.save(output_audio_path, composite.unsqueeze(0), sr)
    
    # Create melspectrograms for normalized audio (not original)
    print("Creating melspectrograms for normalized audio...")
    specs = create_melspectrograms(normalized_audio_data, composite, sr)
    
    # Get file names without path
    labeled_file_names = [path.split("/")[-1] for path in file_paths]
    
    # Plot melspectrograms
    print("Plotting melspectrograms...")
    plot_melspectrograms(specs, sr, labeled_file_names, weights, output_plot_path)
    
    print(f"\nComposite audio saved to {output_audio_path}")
    print(f"Melspectrograms saved to {output_plot_path}")
    print(f"Energy comparison saved to {energy_plot_path}")
    
    print(f"Composite audio saved to {output_audio_path}")
    print(f"Melspectrograms saved to {output_plot_path}")


# if __name__ == "__main__":
#     import argparse
    
#     parser = argparse.ArgumentParser(description="Mix audio files with weights and create melspectrograms")
#     parser.add_argument("--files", nargs="+", required=True, help="Paths to audio files")
#     parser.add_argument("--weights", nargs="+", type=float, required=True, help="Weights for each audio file")
#     parser.add_argument("--output-audio", default="./logs/composite.wav", help="Path to save the composite audio")
#     parser.add_argument("--output-plot", default="./logs/melspectrograms.png", help="Path to save the melspectrogram plot")
    
#     args = parser.parse_args()
#     os.makedirs("./logs", exist_ok=True)
#     main(args.files, args.weights, args.output_audio, args.output_plot)


# Example usage:
# python audio_mixer.py --files audio1.wav audio2.wav audio3.wav audio4.wav --weights 0.4 0.3 0.2 0.1