File size: 22,211 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#!/usr/bin/env python3
"""
streetsoundtext.py - A pipeline that downloads Google Street View panoramas,
extracts perspective views, and analyzes them for sound information.
"""

import os
import requests
import argparse
import numpy as np
import torch
import time
from PIL import Image
from io import BytesIO
from config import LOGS_DIR
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from utils import sample_perspective_img
import cv2

log_dir = LOGS_DIR
os.makedirs(log_dir, exist_ok=True)  # Creates the directory if it doesn't exist

# soundscape_query = "<image>\nWhat can we expect to hear from the location captured in this image? Name the around five nouns. Avoid speculation and provide a concise response including sound sources visible in the image."
soundscape_query = """<image>
Identify 5 potential sound sources visible in this image. For each source, provide both the noun and a brief description of its typical sound.

Format your response exactly like these examples (do not include the word "Noun:" in your response):
Car: engine humming with occasional honking.
River: gentle flowing water with subtle splashing sounds.
Trees: rustling leaves moved by the wind.
"""
# Constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

# Model Leaderboard Paths
MODEL_LEADERBOARD = {
    "intern_2_5-8B": "OpenGVLab/InternVL2_5-8B-MPO",
    "intern_2_5-4B": "OpenGVLab/InternVL2_5-4B-MPO",
}

class StreetViewDownloader:
    """Downloads panoramic images from Google Street View"""
    
    def __init__(self):
        # URLs for API requests
        # https://www.google.ca/maps/rpc/photo/listentityphotos?authuser=0&hl=en&gl=us&pb=!1e3!5m45!2m2!1i203!2i100!3m3!2i4!3sCAEIBAgFCAYgAQ!5b1!7m33!1m3!1e1!2b0!3e3!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e10!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e4!1m3!1e9!2b1!3e2!2b1!8m0!9b0!11m1!4b1!6m3!1sI63QZ8b4BcSli-gPvPHf-Qc!7e81!15i11021!9m2!2d-90.30324219145255!3d38.636242944711036!10d91.37627840655999
        #self.panoid_req = 'https://www.google.com/maps/preview/reveal?authuser=0&hl=en&gl=us&pb=!2m9!1m3!1d82597.14038230096!2d{}!3d{}!2m0!3m2!1i1523!2i1272!4f13.1!3m2!2d{}!3d{}!4m2!1syPETZOjwLvCIptQPiJum-AQ!7e81!5m5!2m4!1i96!2i64!3i1!4i8'
        self.panoid_req = 'https://www.google.ca/maps/rpc/photo/listentityphotos?authuser=0&hl=en&gl=us&pb=!1e3!5m45!2m2!1i203!2i100!3m3!2i4!3sCAEIBAgFCAYgAQ!5b1!7m33!1m3!1e1!2b0!3e3!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e10!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e4!1m3!1e9!2b1!3e2!2b1!8m0!9b0!11m1!4b1!6m3!1sI63QZ8b4BcSli-gPvPHf-Qc!7e81!15i11021!9m2!2d{}!3d{}!10d25'
        #                     https://www.google.com/maps/photometa/v1?authuser=0&hl=en&gl=us&pb=!1m4!1smaps_sv.tactile!11m2!2m1!1b1!2m2!1sen!2sus!3m3!1m2!1e2!2s{}!4m61!1e1!1e2!1e3!1e4!1e5!1e6!1e8!1e12!1e17!2m1!1e1!4m1!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2!9m36!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e3!2b1!3e2!1m3!1e3!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e1!2b0!3e3!1m3!1e4!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e3!11m2!3m1!4b1 # vmSzE7zkK2eETwAP_r8UdQ
        #                     https://www.google.ca/maps/photometa/v1?authuser=0&hl=en&gl=us&pb=!1m4!1smaps_sv.tactile!11m2!2m1!1b1!2m2!1sen!2sus!3m3!1m2!1e2!2s{}!4m61!1e1!1e2!1e3!1e4!1e5!1e6!1e8!1e12!1e17!2m1!1e1!4m1!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2!9m36!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e3!2b1!3e2!1m3!1e3!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e1!2b0!3e3!1m3!1e4!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e3!11m2!3m1!4b1 # -9HfuNFUDOw_IP5SA5IspA
        self.photometa_req = 'https://www.google.com/maps/photometa/v1?authuser=0&hl=en&gl=us&pb=!1m4!1smaps_sv.tactile!11m2!2m1!1b1!2m2!1sen!2sus!3m5!1m2!1e2!2s{}!2m1!5s0x87d8b49f53fc92e9:0x6ecb6e520c6f4d9f!4m57!1e1!1e2!1e3!1e4!1e5!1e6!1e8!1e12!2m1!1e1!4m1!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2!9m36!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e3!2b1!3e2!1m3!1e3!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e1!2b0!3e3!1m3!1e4!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e3'
        self.panimg_req = 'https://streetviewpixels-pa.googleapis.com/v1/tile?cb_client=maps_sv.tactile&panoid={}&x={}&y={}&zoom={}'
    def get_image_id(self, lat, lon):
        """Get Street View panorama ID for given coordinates"""
        null = None
        pr_response = requests.get(self.panoid_req.format(lon, lat, lon, lat))
        if pr_response.status_code != 200:
            error_message = f"Error fetching panorama ID: HTTP {pr_response.status_code}"
            if pr_response.status_code == 400:
                error_message += " - Bad request. Check coordinates format."
            elif pr_response.status_code == 401 or pr_response.status_code == 403:
                error_message += " - Authentication error. Check API key and permissions."
            elif pr_response.status_code == 404:
                error_message += " - No panorama found at these coordinates."
            elif pr_response.status_code == 429:
                error_message += " - Rate limit exceeded. Try again later."
            elif pr_response.status_code >= 500:
                error_message += " - Server error. Try again later."
            return None

        pr = BytesIO(pr_response.content).getvalue().decode('utf-8')
        pr = eval(pr[pr.index('\n'):])
        try:
            panoid = pr[0][0][0]
        except:
            return None
        
        return panoid
        
    def download_image(self, lat, lon, zoom=1):
        """Download Street View panorama and metadata"""
        null = None
        panoid = self.get_image_id(lat, lon)
        if panoid is None:
            raise ValueError(f"get_image_id failed() at coordinates: {lat}, {lon}")
            
        # Get metadata
        pm_response = requests.get(self.photometa_req.format(panoid))
        pm = BytesIO(pm_response.content).getvalue().decode('utf-8')
        pm = eval(pm[pm.index('\n'):])
        pan_list = pm[1][0][5][0][3][0]

        # Extract relevant info
        pid = pan_list[0][0][1]
        plat = pan_list[0][2][0][2]
        plon = pan_list[0][2][0][3]
        p_orient = pan_list[0][2][2][0]

        # Download image tiles and assemble panorama
        img_part_inds = [(x, y) for x in range(2**zoom) for y in range(2**(zoom-1))]
        img = np.zeros((512*(2**(zoom-1)), 512*(2**zoom), 3), dtype=np.uint8)
        
        for x, y in img_part_inds:
            sub_img_response = requests.get(self.panimg_req.format(pid, x, y, zoom))
            sub_img = np.array(Image.open(BytesIO(sub_img_response.content)))
            img[512*y:512*(y+1), 512*x:512*(x+1)] = sub_img

        if (img[-1] == 0).all():
            # raise ValueError("Failed to download complete panorama")
            print("Failed to download complete panorama")
        
        return img, pid, plat, plon, p_orient


class PerspectiveExtractor:
    """Extracts perspective views from panoramic images"""
    
    def __init__(self, output_shape=(256, 256), fov=(90, 90)):
        self.output_shape = output_shape
        self.fov = fov
        
    def extract_views(self, pano_img, face_size=512):
        """Extract front, back, left, and right views based on orientation"""
        # orientations = {
        #     "front": (0, p_orient, 0),       # Align front with real orientation
        #     "back": (0, p_orient + 180, 0),  # Behind
        #     "left": (0, p_orient - 90, 0),   # Left side
        #     "right": (0, p_orient + 90, 0),  # Right side
        # }
        
        # cutouts = {}
        # for view, rot in orientations.items():
        #     cutout, fov, applied_rot = sample_perspective_img(
        #         pano_img, self.output_shape, fov=self.fov, rot=rot
        #     )
        #     cutouts[view] = cutout
        
        # return cutouts
        """
        Convert ERP panorama to four cubic faces: Front, Left, Back, Right.
        Args:
            erp_img (numpy.ndarray): The input equirectangular image.
            face_size (int): The size of each cubic face.
        Returns:
            dict: A dictionary with the four cube faces.
        """
        # Get ERP dimensions
        h_erp, w_erp, _ = pano_img.shape
        # Define cube face directions (yaw, pitch, roll)
        cube_faces = {
            "front":  (0, 0),
            "left":   (90, 0),
            "back":   (180, 0),
            "right":  (-90, 0),
        }
        # Output faces
        faces = {}
        # Generate each face
        for face_name, (yaw, pitch) in cube_faces.items():
            # Create a perspective transformation matrix
            fov = 90  # Field of view
            K = np.array([
                [face_size / (2 * np.tan(np.radians(fov / 2))), 0, face_size / 2],
                [0, face_size / (2 * np.tan(np.radians(fov / 2))), face_size / 2],
                [0, 0, 1]
            ])
            # Generate 3D world coordinates for the cube face
            x, y = np.meshgrid(np.linspace(-1, 1, face_size), np.linspace(-1, 1, face_size))
            z = np.ones_like(x)
            # Normalize 3D points
            points_3d = np.stack((x, y, z), axis=-1)  # Shape: (H, W, 3)
            points_3d /= np.linalg.norm(points_3d, axis=-1, keepdims=True)
            # Apply rotation to align with the cube face
            yaw_rad, pitch_rad = np.radians(yaw), np.radians(pitch)
            Ry = np.array([[np.cos(yaw_rad), 0, np.sin(yaw_rad)], [0, 1, 0], [-np.sin(yaw_rad), 0, np.cos(yaw_rad)]])
            Rx = np.array([[1, 0, 0], [0, np.cos(pitch_rad), -np.sin(pitch_rad)], [0, np.sin(pitch_rad), np.cos(pitch_rad)]])
            R = Ry @ Rx
            # Rotate points
            points_3d_rot = np.einsum('ij,hwj->hwi', R, points_3d)
            # Convert 3D to spherical coordinates
            lon = np.arctan2(points_3d_rot[..., 0], points_3d_rot[..., 2])
            lat = np.arcsin(points_3d_rot[..., 1])
            # Map spherical coordinates to ERP image coordinates
            x_erp = (w_erp * (lon / (2 * np.pi) + 0.5)).astype(np.float32)
            y_erp = (h_erp * (0.5 - lat / np.pi)).astype(np.float32)
            # Sample pixels from ERP image
            face_img = cv2.remap(pano_img, x_erp, y_erp, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP)
            cv2.rotate(face_img, cv2.ROTATE_180, face_img)
            faces[face_name] = face_img
        return faces


class ImageAnalyzer:
    """Analyzes images using Vision-Language Models"""
    
    def __init__(self, model_name="intern_2_5-4B", use_cuda=True):
        self.model_name = model_name
        self.use_cuda = use_cuda and torch.cuda.is_available()
        self.model, self.tokenizer, self.device = self._load_model()
        
    def _load_model(self):
        """Load selected Vision-Language Model"""
        if self.model_name not in MODEL_LEADERBOARD:
            raise ValueError(f"Model '{self.model_name}' not found. Choose from: {list(MODEL_LEADERBOARD.keys())}")
            
        model_path = MODEL_LEADERBOARD[self.model_name]
        
        # Configure device and parameters
        if self.use_cuda:
            device = torch.device("cuda")
            torch_dtype = torch.bfloat16
            use_flash_attn = True
        else:
            device = torch.device("cpu")
            torch_dtype = torch.float32
            use_flash_attn = False
            
        # Load model and tokenizer
        model = AutoModel.from_pretrained(
            model_path,
            torch_dtype=torch_dtype,
            load_in_8bit=False,
            low_cpu_mem_usage=True,
            use_flash_attn=use_flash_attn,
            trust_remote_code=True,
        ).eval().to(device)
            
        tokenizer = AutoTokenizer.from_pretrained(
            model_path,
            trust_remote_code=True,
            use_fast=False
        )
            
        return model, tokenizer, device
    
    def _build_transform(self, input_size=448):
        """Create image transformation pipeline"""
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
        ])
        return transform
    
    def _find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
        """Find closest aspect ratio for image tiling"""
        best_ratio_diff = float('inf')
        best_ratio = (1, 1)
        area = width * height
        for ratio in target_ratios:
            target_aspect_ratio = ratio[0] / ratio[1]
            ratio_diff = abs(aspect_ratio - target_aspect_ratio)
            if ratio_diff < best_ratio_diff:
                best_ratio_diff = ratio_diff
                best_ratio = ratio
            elif ratio_diff == best_ratio_diff:
                if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                    best_ratio = ratio
        return best_ratio
    
    def _preprocess_image(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
        """Preprocess image for model input"""
        orig_width, orig_height = image.size
        aspect_ratio = orig_width / orig_height

        # Calculate possible image aspect ratios
        target_ratios = set(
            (i, j) for n in range(min_num, max_num + 1) 
            for i in range(1, n + 1) 
            for j in range(1, n + 1) 
            if i * j <= max_num and i * j >= min_num
        )
        target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

        # Find closest aspect ratio
        target_aspect_ratio = self._find_closest_aspect_ratio(
            aspect_ratio, target_ratios, orig_width, orig_height, image_size
        )

        # Calculate target dimensions
        target_width = image_size * target_aspect_ratio[0]
        target_height = image_size * target_aspect_ratio[1]
        blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

        # Resize and split image
        resized_img = image.resize((target_width, target_height))
        processed_images = []
        for i in range(blocks):
            box = (
                (i % (target_width // image_size)) * image_size,
                (i // (target_width // image_size)) * image_size,
                ((i % (target_width // image_size)) + 1) * image_size,
                ((i // (target_width // image_size)) + 1) * image_size
            )
            split_img = resized_img.crop(box)
            processed_images.append(split_img)
            
        assert len(processed_images) == blocks
        if use_thumbnail and len(processed_images) != 1:
            thumbnail_img = image.resize((image_size, image_size))
            processed_images.append(thumbnail_img)
            
        return processed_images
        
    def load_image(self, image_path, input_size=448, max_num=12):
        """Load and process image for analysis"""
        image = Image.open(image_path).convert('RGB')
        transform = self._build_transform(input_size)
        images = self._preprocess_image(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)
        return pixel_values
        
    def analyze_image(self, image_path, max_num=12):
        """Analyze image for expected sounds"""
        # Load and process image
        pixel_values = self.load_image(image_path, max_num=max_num)
        
        # Move to device with appropriate dtype
        if self.device.type == "cuda":
            pixel_values = pixel_values.to(torch.bfloat16).to(self.device)
        else:
            pixel_values = pixel_values.to(torch.float32).to(self.device)
        
        # Create sound-focused query
        query = soundscape_query
        
        # Generate response
        generation_config = dict(max_new_tokens=1024, do_sample=True)
        response = self.model.chat(self.tokenizer, pixel_values, query, generation_config)
        
        return response


class StreetSoundTextPipeline:
    """Complete pipeline for Street View sound analysis"""
    
    def __init__(self, log_dir="logs", model_name="intern_2_5-4B", use_cuda=True):
        # Create log directory if it doesn't exist
        self.log_dir = log_dir
        os.makedirs(log_dir, exist_ok=True)
        
        # Initialize components
        self.downloader = StreetViewDownloader()
        self.extractor = PerspectiveExtractor()
        # self.analyzer = ImageAnalyzer(model_name=model_name, use_cuda=use_cuda)
        self.analyzer = None
        self.model_name = model_name
        self.use_cuda = use_cuda
        
    def _load_analyzer(self):
        if self.analyzer is None:
            self.analyzer = ImageAnalyzer(model_name=self.model_name, use_cuda=self.use_cuda)
        
    def _unload_analyzer(self):
        if self.analyzer is not None:
            if hasattr(self.analyzer, 'model') and self.analyzer.model is not None:
                self.analyzer.model = self.analyzer.model.to("cpu")
                del self.analyzer.model
                self.analyzer.model = None
        torch.cuda.empty_cache()
        self.analyzer = None

    def process(self, lat, lon, view, panoramic=False):
        """
        Process a location to generate sound description for specified view or all views
        
        Args:
            lat (float): Latitude
            lon (float): Longitude
            view (str): Perspective view ('front', 'back', 'left', 'right')
            panoramic (bool): If True, process all views instead of just the specified one
            
        Returns:
            dict or list: Results including panorama info and sound description(s)
        """
        if view not in ["front", "back", "left", "right"]:
            raise ValueError(f"Invalid view: {view}. Choose from: front, back, left, right")
        
        # Step 1: Download panoramic image
        print(f"Downloading Street View panorama for coordinates: {lat}, {lon}")
        
        pano_path = os.path.join(self.log_dir, "panorama.jpg")
        pano_img, pid, plat, plon, p_orient = self.downloader.download_image(lat, lon)
        Image.fromarray(pano_img).save(pano_path)
    
        # Step 2: Extract perspective views
        print(f"Extracting perspective views with orientation: {p_orient}°")
        cutouts = self.extractor.extract_views(pano_img, 512)
        
        # Save all views
        for v, img in cutouts.items():
            view_path = os.path.join(self.log_dir, f"{v}.jpg")
            Image.fromarray(img).save(view_path)
        
        self._load_analyzer()
        print("\n[DEBUG] Current soundscape query:")
        print(soundscape_query)
        print("-" * 50)
        if panoramic:
            # Process all views
            print(f"Analyzing all views for sound information")
            results = []
            
            for current_view in ["front", "back", "left", "right"]:
                view_path = os.path.join(self.log_dir, f"{current_view}.jpg")
                sound_description = self.analyzer.analyze_image(view_path)
                
                view_result = {
                    "panorama_id": pid,
                    "coordinates": {"lat": plat, "lon": plon},
                    "orientation": p_orient,
                    "view": current_view,
                    "sound_description": sound_description,
                    "files": {
                        "panorama": pano_path,
                        "view_path": view_path
                    }
                }
                results.append(view_result)
            
            self._unload_analyzer()
            return results
        else:
            # Process only the selected view
            view_path = os.path.join(self.log_dir, f"{view}.jpg")
            print(f"Analyzing {view} view for sound information")
            sound_description = self.analyzer.analyze_image(view_path)
            
            self._unload_analyzer()
            
            # Prepare results
            results = {
                "panorama_id": pid,
                "coordinates": {"lat": plat, "lon": plon},
                "orientation": p_orient,
                "view": view,
                "sound_description": sound_description,
                "files": {
                    "panorama": pano_path,
                    "views": {v: os.path.join(self.log_dir, f"{v}.jpg") for v in cutouts.keys()}
                }
            }
            
            return results


def parse_location(location_str):
    """Parse location string in format 'lat,lon' into float tuple"""
    try:
        lat, lon = map(float, location_str.split(','))
        return lat, lon
    except ValueError:
        raise argparse.ArgumentTypeError("Location must be in format 'latitude,longitude'")


def generate_caption(lat, lon, view="front", model="intern_2_5-4B", cpu_only=False, panoramic=False):
    """
    Generate sound captions for one or all views of a street view location
    
    Args:
        lat (float/str): Latitude
        lon (float/str): Longitude
        view (str): Perspective view ('front', 'back', 'left', 'right')
        model (str): Model name to use for analysis
        cpu_only (bool): Whether to force CPU usage
        panoramic (bool): If True, process all views instead of just the specified one
        
    Returns:
        dict or list: Results with sound descriptions
    """
    pipeline = StreetSoundTextPipeline(
        log_dir=log_dir,
        model_name=model,
        use_cuda=not cpu_only
    )
    
    try:
        results = pipeline.process(lat, lon, view, panoramic=panoramic)
        
        if panoramic:
            # Process results for all views
            print(f"Generated captions for all views at location: {lat}, {lon}")
        else:
            print(f"Generated caption for {view} view at location: {lat}, {lon}")
        
        return results
    except Exception as e:
        print(f"Error: {str(e)}")
        return None