FQiao's picture
Upload 144 files
b4754db verified
raw
history blame contribute delete
3.25 kB
import glob
import gradio as gr
import matplotlib
import numpy as np
from PIL import Image
import torch
import tempfile
from gradio_imageslider import ImageSlider
from depth_anything_v2.dpt import DepthAnythingV2
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
model = DepthAnythingV2(**model_configs[encoder])
state_dict = torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
title = "# Depth Anything V2"
description = """Official demo for **Depth Anything V2**.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), or [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
def predict_depth(image):
return model.infer_image(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
submit = gr.Button(value="Compute Depth")
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image):
original_image = image.copy()
h, w = image.shape[:2]
depth = predict_depth(image[:, :, ::-1])
raw_depth = Image.fromarray(depth.astype('uint16'))
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp_raw_depth.name)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
gray_depth = Image.fromarray(depth)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
gray_depth.save(tmp_gray_depth.name)
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
example_files = glob.glob('assets/examples/*')
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch()