File size: 8,289 Bytes
02b9ec5
a0c86ca
02b9ec5
 
b4754db
 
 
02b9ec5
b4754db
02b9ec5
 
 
b4754db
02b9ec5
b4754db
02b9ec5
 
b4754db
02b9ec5
 
 
b4754db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b9ec5
 
 
 
 
 
 
 
 
b4754db
02b9ec5
b4754db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b9ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4754db
 
 
 
 
 
 
 
 
 
02b9ec5
a0c86ca
02b9ec5
 
b4754db
02b9ec5
b4754db
 
02b9ec5
f502870
b4754db
 
02b9ec5
 
eed95bc
 
02b9ec5
eed95bc
02b9ec5
 
 
eed95bc
02b9ec5
 
 
 
 
 
 
 
 
 
 
 
eed95bc
 
02b9ec5
 
 
 
 
 
 
 
 
 
 
a0c86ca
02b9ec5
 
 
 
 
 
 
 
 
 
eed95bc
b4754db
 
 
92e4ece
e76e653
2936be9
e76e653
02b9ec5
e76e653
 
a0c86ca
02b9ec5
e76e653
 
b4754db
 
02b9ec5
 
 
 
 
 
 
 
b4754db
 
ff0c955
b4754db
 
 
02b9ec5
 
 
 
 
 
 
 
 
 
 
b4754db
 
 
 
 
02b9ec5
b4754db
 
 
02b9ec5
b4754db
 
02b9ec5
b4754db
 
 
02b9ec5
b4754db
 
 
319689b
0d91fab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
from os.path import basename, splitext, join
import tempfile
import gradio as gr
import numpy as np
from PIL import Image
import torch
import cv2
from torchvision.transforms.functional import to_tensor, to_pil_image
from torch import Tensor
from genstereo import GenStereo, AdaptiveFusionLayer
import ssl
from huggingface_hub import hf_hub_download
import spaces

from extern.DAM2.depth_anything_v2.dpt import DepthAnythingV2
ssl._create_default_https_context = ssl._create_unverified_context

IMAGE_SIZE = 512
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
CHECKPOINT_NAME = 'genstereo'

def download_models():
    models = [
        {
            'repo': 'stabilityai/sd-vae-ft-mse',
            'sub': None,
            'dst': 'checkpoints/sd-vae-ft-mse',
            'files': ['config.json', 'diffusion_pytorch_model.safetensors'],
            'token': None
        },
        {
            'repo': 'lambdalabs/sd-image-variations-diffusers',
            'sub': 'image_encoder',
            'dst': 'checkpoints',
            'files': ['config.json', 'pytorch_model.bin'],
            'token': None
        },
        {
            'repo': 'FQiao/GenStereo',
            'sub': None,
            'dst': 'checkpoints/genstereo',
            'files': ['config.json', 'denoising_unet.pth', 'fusion_layer.pth', 'pose_guider.pth', 'reference_unet.pth'],
            'token': None
        },
        {
            'repo': 'depth-anything/Depth-Anything-V2-Large',
            'sub': None,
            'dst': 'checkpoints',
            'files': [f'depth_anything_v2_vitl.pth'],
            'token': None
        }
    ]

    for model in models:
        for file in model['files']:
            hf_hub_download(
                repo_id=model['repo'],
                subfolder=model['sub'],
                filename=file,
                local_dir=model['dst'],
                token=model['token']
            )

# Setup.
download_models()

# DepthAnythingV2
def get_dam2_model():
    model_configs = {
        'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
        'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
        'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    }

    encoder = 'vitl'
    encoder_size_map = {'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large'}

    if encoder not in encoder_size_map:
        raise ValueError(f"Unsupported encoder: {encoder}. Supported: {list(encoder_size_map.keys())}")

    dam2 = DepthAnythingV2(**model_configs[encoder])
    dam2_checkpoint = f'checkpoints/depth_anything_v2_{encoder}.pth'
    dam2.load_state_dict(torch.load(dam2_checkpoint, map_location='cpu'))
    dam2 = dam2.to(DEVICE).eval()
    return dam2

# GenStereo
def get_genstereo_model():
    genwarp_cfg = dict(
        pretrained_model_path='checkpoints',
        checkpoint_name=CHECKPOINT_NAME,
        half_precision_weights=True
    )
    genstereo = GenStereo(cfg=genwarp_cfg, device=DEVICE)
    return genstereo

# Adaptive Fusion
def get_fusion_model():
    fusion_model = AdaptiveFusionLayer()
    fusion_checkpoint = join('checkpoints', CHECKPOINT_NAME, 'fusion_layer.pth')
    fusion_model.load_state_dict(torch.load(fusion_checkpoint, map_location='cpu'))
    fusion_model = fusion_model.to(DEVICE).eval()
    return fusion_model

# Crop the image to the shorter side.
def crop(img: Image) -> Image:
    W, H = img.size
    if W < H:
        left, right = 0, W
        top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
    else:
        left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
        top, bottom = 0, H
    return img.crop((left, top, right, bottom))

def normalize_disp(disp):
    return (disp - disp.min()) / (disp.max() - disp.min())

# Gradio app
with tempfile.TemporaryDirectory() as tmpdir:
    with gr.Blocks(
        title='StereoGen Demo',
        css='img {display: inline;}'
    ) as demo:
        # Internal states.
        src_image = gr.State()
        src_depth = gr.State()

        # Callbacks
        @spaces.GPU()        
        def cb_mde(image_file: str):
            if not image_file:
                # Return None if no image is provided (e.g., when file is cleared).
                return None, None, None, None

            image = crop(Image.open(image_file).convert('RGB'))  # Load image using PIL
            image = image.resize((IMAGE_SIZE, IMAGE_SIZE))

            image_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

            dam2 = get_dam2_model()
            depth_dam2 = dam2.infer_image(image_bgr)
            depth = torch.tensor(depth_dam2).unsqueeze(0).unsqueeze(0).float()

            depth_image = cv2.applyColorMap((normalize_disp(depth_dam2) * 255).astype(np.uint8), cv2.COLORMAP_JET)

            return image, depth_image, image, depth

        @spaces.GPU()
        def cb_generate(image, depth: Tensor, scale_factor):
            norm_disp = normalize_disp(depth.cuda())
            disp = norm_disp * scale_factor / 100 * IMAGE_SIZE

            genstereo = get_genstereo_model()
            fusion_model = get_fusion_model()

            renders = genstereo(
                src_image=image,
                src_disparity=disp,
                ratio=None,
            )
            warped = (renders['warped'] + 1) / 2
            
            synthesized = renders['synthesized']
            mask = renders['mask']
            fusion_image = fusion_model(synthesized.float(), warped.float(), mask.float())

            warped_pil = to_pil_image(warped[0])
            fusion_pil = to_pil_image(fusion_image[0])

            return warped_pil, fusion_pil

        # Blocks.
        gr.Markdown(
            """
            # GenStereo: Towards Open-World Generation of Stereo Images and Unsupervised Matching
            
            [Project Web](https://qjizhi.github.io/genstereo) 路 [Spaces Demo](https://huggingface.co/spaces/FQiao/GenStereo) 路 [GitHub Repo](https://github.com/Qjizhi/GenStereo) 路 [Checkpoints](https://huggingface.co/FQiao/GenStereo/tree/main) 路 [Paper](https://arxiv.org/abs/2503.12720)
            
            ## Introduction 
            This is an official demo for the paper "GenStereo: Towards Open-World Generation of Stereo Images and Unsupervised Matching". Given an arbitrary reference image, GenStereo can generate the corresponding right-view image.
            
            ## How to Use
            1. Upload a reference image to "Left Image"
               - You can also select an image from "Examples"
            2. Hit "Generate a right image" button and check the result
            """
        )
        file = gr.File(label='Left', file_types=['image'])
        examples = gr.Examples(
            examples=['./assets/COCO_val2017_000000070229.jpg',
                    './assets/COCO_val2017_000000092839.jpg',
                    './assets/KITTI2015_000003_10.png',
                    './assets/KITTI2015_000147_10.png'],
            inputs=file
        )
        with gr.Row():
            image_widget = gr.Image(
                label='Left Image', type='filepath',
                interactive=False
            )
            depth_widget = gr.Image(label='Estimated Depth', type='pil')

        # Add scale factor slider
        scale_slider = gr.Slider(
            label='Scale Factor',
            minimum=1.0,
            maximum=30.0,
            value=15.0,
            step=0.1,
        )

        button = gr.Button('Generate a right image', size='lg', variant='primary')
        with gr.Row():
            warped_widget = gr.Image(
                label='Warped Image', type='pil', interactive=False
            )
            gen_widget = gr.Image(
                label='Generated Right', type='pil', interactive=False
            )

        # Events
        file.change(
            fn=cb_mde,
            inputs=file,
            outputs=[image_widget, depth_widget, src_image, src_depth]
        )
        button.click(
            fn=cb_generate,
            inputs=[src_image, src_depth, scale_slider],
            outputs=[warped_widget, gen_widget]
        )

    if __name__ == '__main__':
        demo.launch()