File size: 9,670 Bytes
dc80200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7eec1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
from enum import Enum
from throughput_utils import create_throughput_plot

class AttentionType(Enum):
    LOCAL = 0
    GLOBAL = 1

class PhoneBandwidth(Enum):
    Sixteen = 60
    Fifteen = 51.2
    Fourteen = 34.1

custom_css = """
#plot-container {
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 1px 3px rgba(0, 0, 0, 0.08);
    padding: 1rem;
    background-color: white;
    height: 100%;
    margin-bottom: 1.5rem;
}

#generate-button {
    background-color: #2563eb;
    color: white;
    border-radius: 8px;
    font-weight: bold;
    padding: 10px 20px;
    box-shadow: 0 4px 6px rgba(37, 99, 235, 0.1);
    transition: all 0.2s ease;
    width: 100%;
    max-width: 400px;
    margin: 0 auto;
    font-size: 16px;
}

#generate-button:hover {
    background-color: #1d4ed8;
    box-shadow: 0 6px 8px rgba(37, 99, 235, 0.2);
    transform: translateY(-2px);
}

.gradio-container {
    background-color: #f5f7fa;
}

/* Custom styles for sliders containers */
.sliders-container {
    border: 1px solid rgba(0, 0, 0, 0.1);
    border-radius: 8px;
    padding: 1rem;
    margin-top: 0.5rem;
    background-color: rgba(255, 255, 255, 0.8);
}

#error-status {
    color: #b91c1c;
    background-color: #fee2e2;
    border-radius: 8px;
    padding: 0.75rem;
    margin-top: 0.5rem;
    border: 1px solid #f87171;
    font-weight: 500;
}
"""

with gr.Blocks(css=custom_css) as demo:
    gqa_sliders = []
    mla_sliders = []
    
    with gr.Column():
        gr.Markdown(
            """# ๐Ÿ“Š On-Device LLM Throughput Calculator

This tool estimates the throughput (tokens per second) of Large Language Models on devices with memory bandwidth constraints.
It visualizes how different attention mechanisms (GQA, MLA) and context lengths affect throughput.
"""
        )
        
        with gr.Row():
            plot_output = gr.Image(label="Throughput Plot", type="pil", elem_id="plot-container")
        
        # Add status element to display validation errors
        status_output = gr.Markdown(visible=False, elem_id="error-status")
        
        with gr.Row():
            plot_button = gr.Button("Generate Throughput Plot", size="lg", elem_id="generate-button", variant="primary")
        
        with gr.Row():
            with gr.Column(scale=1):
                with gr.Group():
                    gr.Markdown("### Device Configuration")
                    model_name = gr.Textbox(label="Model Name", value="TinyLLM")
                    iphone_model = gr.Dropdown(
                        label="iPhone Model",
                        choices=[e.name for e in PhoneBandwidth],
                        value=PhoneBandwidth.Sixteen.name,
                        interactive=True
                    )
                    
                with gr.Group():
                    gr.Markdown("### Attention Configurations to Plot")
                    
                    gr.Markdown("#### GQA Head Configurations")
                    gr.Markdown("*Note: GQA head count must be less than or equal to the total number of heads*")
                    
                    with gr.Column(elem_classes="sliders-container"):
                        gqa_slider1 = gr.Slider(minimum=1, maximum=32, step=2, value=4, 
                                               label="GQA Head Count #1")
                        gqa_slider2 = gr.Slider(minimum=1, maximum=32, step=2, value=8, 
                                               label="GQA Head Count #2")
                        gqa_sliders.extend([gqa_slider1, gqa_slider2])
                    
                    gr.Markdown("#### MLA Compressed Dimensions")
                    gr.Markdown("*Note: MLA dimension must be less than or equal to d_model*")
                    
                    with gr.Column(elem_classes="sliders-container"):
                        mla_slider1 = gr.Slider(minimum=64, maximum=1024, step=64, value=256, 
                                              label="MLA Dimension #1")
                        mla_slider2 = gr.Slider(minimum=64, maximum=1024, step=64, value=512, 
                                              label="MLA Dimension #2")
                        mla_sliders.extend([mla_slider1, mla_slider2])
            
            with gr.Column(scale=1):
                with gr.Group():
                    gr.Markdown("### Model Configuration")
                    num_parameters = gr.Number(label="Parameters (Billions)", value=3)
                    parameter_size = gr.Slider(minimum=1, maximum=16.0, step=1.0,  label="Parameter Size (bits per param)", value=5)
                    kv_parameter_size = gr.Slider(minimum=0.25, maximum=4.0, step=0.25,
                                                 label="KV Cache Size (bytes per value)", value=2.0)
                    num_layers = gr.Number(label="Number of Layers", value=36)
                    num_heads = gr.Number(label="Number of Heads", value=16, 
                                        info="GQA head counts must be less than or equal to this value")
                    d_model = gr.Number(label="D Model", value=2048,
                                       info="MLA dimensions must be less than or equal to this value")
                    
                with gr.Group():
                    gr.Markdown("### Context Configuration")
                    ctx_length = gr.Slider(minimum=1024, maximum=131072, step=1024, 
                                          label="Max Context Length", value=65536)
                    local_layers = gr.Number(label="Local Attention Layers", value=0)
                    global_layers = gr.Number(label="Global Attention Layers", value=1)
                    swa_size = gr.Slider(minimum=1024, maximum=32768, step=1024,
                                       label="Sliding Window Size", value=4096)
                
        gr.Markdown(
            """
            For more information, see [JAX ML Scaling Book](https://jax-ml.github.io/scaling-book/inference/#theoretical-estimates-for-llm-latency-and-throughput).
            """
        )
    
    def generate_throughput_plot(
        model_name, iphone_model, num_parameters, parameter_size, 
        kv_parameter_size, num_layers, num_heads, d_model, ctx_length, 
        local_layers, global_layers, swa_size, gqa_1, gqa_2, mla_1, mla_2
    ):
        memory_bandwidth = PhoneBandwidth[iphone_model].value
        
        if "iPhone" not in model_name:
            model_name = f"iPhone {iphone_model}: {model_name}"
            
        try:
            # Validate GQA head counts must be less than total attention heads
            for gqa_heads, label in [(gqa_1, "GQA Head Count #1"), (gqa_2, "GQA Head Count #2")]:
                if gqa_heads > num_heads:
                    raise ValueError(f"{label} ({gqa_heads}) cannot be greater than the total number of attention heads ({num_heads})")
            
            # Validate MLA compressed dimensions must be less than d_model
            for mla_dim, label in [(mla_1, "MLA Dimension #1"), (mla_2, "MLA Dimension #2")]:
                if mla_dim > d_model:
                    raise ValueError(f"{label} ({mla_dim}) cannot be greater than the model dimension (d_model = {d_model})")
            
            plot_img = create_throughput_plot(
                model_name,
                memory_bandwidth,
                num_parameters,
                parameter_size,
                kv_parameter_size,
                num_layers,
                num_heads,
                d_model,
                ctx_length,
                local_layers,
                global_layers,
                swa_size,
                [gqa_1, gqa_2],
                [mla_1, mla_2],
            )
            
            # Hide error message, show plot
            return [
                gr.update(value=plot_img),
                gr.update(visible=False, value="")
            ]
        except Exception as e:
            err_string = f"Error generating plot: {str(e)}"
            print(err_string)
            # Show error message, clear plot
            return [
                gr.update(value=None),
                gr.update(visible=True, value=f"โš ๏ธ {err_string}")
            ]
    
    # Function to update GQA sliders based on number of heads
    def update_gqa_sliders(heads_value):
        if not heads_value or heads_value < 1:
            heads_value = 1
        return [gr.update(maximum=heads_value, value=min(slider.value, heads_value)) for slider in gqa_sliders]
    
    # Function to update MLA sliders based on d_model
    def update_mla_sliders(d_model_value):
        if not d_model_value or d_model_value < 64:
            d_model_value = 64
        return [gr.update(maximum=d_model_value, value=min(slider.value, d_model_value)) for slider in mla_sliders]
    
    # Add event handlers to update sliders when model configuration changes
    num_heads.change(
        update_gqa_sliders,
        inputs=[num_heads],
        outputs=gqa_sliders
    )
    
    d_model.change(
        update_mla_sliders,
        inputs=[d_model],
        outputs=mla_sliders
    )
    
    plot_button.click(
        generate_throughput_plot,
        inputs=[
            model_name,
            iphone_model,
            num_parameters,
            parameter_size,
            kv_parameter_size,
            num_layers,
            num_heads,
            d_model,
            ctx_length,
            local_layers,
            global_layers,
            swa_size,
            *gqa_sliders,
            *mla_sliders,
        ],
        outputs=[plot_output, status_output]
    )

demo.launch()