Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
from datetime import datetime, timedelta | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
import matplotlib.gridspec as gridspec | |
import math | |
from matplotlib.backends.backend_pdf import PdfPages | |
from matplotlib.patches import FancyBboxPatch # 新增导入 | |
SPLIT_TIME = "17:30" | |
BUSINESS_START = "09:30" | |
BUSINESS_END = "01:30" | |
BORDER_COLOR = '#A9A9A9' | |
DATE_COLOR = '#A9A9A9' | |
def process_schedule(file): | |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容""" | |
try: | |
# 读取 Excel,跳过前 8 行 | |
df = pd.read_excel(file, skiprows=8) | |
# 提取所需列 (G9, H9, J9) | |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列 | |
df.columns = ['Hall', 'StartTime', 'EndTime'] | |
# 清理数据 | |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime']) | |
# 转换影厅格式为 "#号" 格式 | |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' ' | |
# 保存原始时间字符串用于诊断 | |
df['original_end'] = df['EndTime'] | |
# 转换时间为 datetime 对象 | |
base_date = datetime.today().date() | |
df['StartTime'] = pd.to_datetime(df['StartTime']) | |
df['EndTime'] = pd.to_datetime(df['EndTime']) | |
# 设置基准时间 | |
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M") | |
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M") | |
# 处理跨天情况 | |
if business_end < business_start: | |
business_end += timedelta(days=1) | |
# 标准化所有时间到同一天 | |
for idx, row in df.iterrows(): | |
end_time = row['EndTime'] | |
if end_time.hour < 9: | |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1) | |
if row['StartTime'].hour >= 21 and end_time.hour < 9: | |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1) | |
# 筛选营业时间内的场次 | |
df['time_for_comparison'] = df['EndTime'].apply( | |
lambda x: datetime.combine(base_date, x.time()) | |
) | |
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1) | |
valid_times = ( | |
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) & | |
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time()))) | |
) | |
df = df[valid_times] | |
# 按散场时间排序 | |
df = df.sort_values('EndTime') | |
# 分割数据 | |
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M") | |
split_time_for_comparison = df['time_for_comparison'].apply( | |
lambda x: datetime.combine(base_date, split_time.time()) | |
) | |
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy() | |
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy() | |
# 格式化时间显示 | |
for part in [part1, part2]: | |
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M') | |
# 关键修改:精确读取C6单元格 | |
date_df = pd.read_excel( | |
file, | |
skiprows=5, # 跳过前5行(0-4) | |
nrows=1, # 只读1行 | |
usecols=[2], # 第三列(C列) | |
header=None # 无表头 | |
) | |
date_cell = date_df.iloc[0, 0] | |
try: | |
# 处理不同日期格式 | |
if isinstance(date_cell, str): | |
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d') | |
else: | |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d') | |
except: | |
date_str = datetime.today().strftime('%Y-%m-%d') | |
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str | |
except Exception as e: | |
st.error(f"处理文件时出错: {str(e)}") | |
return None, None, None | |
def create_print_layout(data, title, date_str): | |
"""创建打印布局 (PNG 和 PDF)""" | |
if data.empty: | |
return None | |
# --- 创建 PNG 图形 --- | |
png_fig = plt.figure(figsize=(5.83, 8.27), dpi=300) # A5 竖向 | |
png_ax_container = png_fig.add_subplot(111) # 创建一个容器轴,用于隐藏外部边框 | |
png_ax_container.set_axis_off() | |
# 减小边距,例如从 0.05 减小到 0.02 | |
png_fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02) | |
# --- 创建 PDF 图形 --- | |
pdf_fig = plt.figure(figsize=(5.83, 8.27), dpi=300) # A5 竖向 | |
pdf_ax_container = pdf_fig.add_subplot(111) | |
pdf_ax_container.set_axis_off() | |
# 减小边距,例如从 0.05 减小到 0.02 | |
pdf_fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02) | |
# --- 内部绘图函数 --- | |
def process_figure(fig, is_pdf=False): | |
# 设置字体 | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 确保字体可用 | |
# 计算行数和总数 | |
total_items = len(data) | |
num_cols = 3 | |
num_rows = math.ceil(total_items / num_cols) | |
# 创建网格 (在 figure 内部创建) | |
# 减小子图间距 hspace/wspace,减小日期行高度比例 height_ratios | |
gs = gridspec.GridSpec(num_rows + 1, num_cols, hspace=0.05, wspace=0.05, height_ratios=[0.1] + [1] * num_rows, figure=fig) # 将日期行放在顶部 | |
# 调整基础字体大小,避免过大或过小 | |
# A5 宽度大约 1749 像素 @ 300dpi, 高度 2481 | |
# 每列宽度约 1749 * 0.9 / 3 = 525 像素 | |
# 每行高度约 (2481 * 0.9 * (1 / (1.2))) / num_rows | |
# 字体大小与单元格大小相关,这里用经验值调整 | |
available_height_per_row = (8.27 * 0.9 * (1 / 1.2)) / num_rows if num_rows > 0 else 1 | |
base_fontsize = min(40, max(10, available_height_per_row * 72 * 0.5)) # 72 points per inch, 估算系数 | |
data_values = data.values.tolist() | |
# 补全空位,确保是3的倍数 | |
while len(data_values) % num_cols != 0: | |
data_values.append(['', '']) | |
rows_per_col_layout = math.ceil(len(data_values) / num_cols) # 按列优先排列的行数 | |
# 按列优先排序数据 (Z字形) | |
sorted_data = [['', '']] * len(data_values) | |
for i, item in enumerate(data_values): | |
if item[0] and item[1]: | |
row_in_col = i % rows_per_col_layout | |
col_idx = i // rows_per_col_layout | |
new_index = row_in_col * num_cols + col_idx | |
if new_index < len(sorted_data): | |
sorted_data[new_index] = item | |
# 绘制数据单元格 | |
for idx, (hall, end_time) in enumerate(sorted_data): | |
if hall and end_time: | |
row_grid = idx // num_cols + 1 # +1 因为日期占了第0行 | |
col_grid = idx % num_cols | |
if row_grid < num_rows + 1: # 确保索引在网格内 | |
ax = fig.add_subplot(gs[row_grid, col_grid]) # 使用 fig.add_subplot | |
# --- 修改开始:绘制圆角矩形 --- | |
# 隐藏原始边框 | |
for spine in ax.spines.values(): | |
spine.set_visible(False) | |
# 创建圆角矩形 Patch | |
bbox = FancyBboxPatch( | |
(0.01, 0.01), # 左下角坐标 (稍微内缩一点避免接触边缘) | |
0.98, 0.98, # 宽度和高度 (占满大部分区域) | |
boxstyle="round,pad=0,rounding_size=0.02", # 圆角样式,rounding_size 控制圆角程度 | |
edgecolor=BORDER_COLOR, | |
facecolor='none', # 无填充色 | |
linewidth=0.5, | |
transform=ax.transAxes, # 使用相对坐标 | |
clip_on=False # 避免被裁剪 | |
) | |
# 添加 Patch 到 Axes | |
ax.add_patch(bbox) | |
# --- 修改结束 --- | |
display_text = f"{hall}{end_time}" | |
ax.text(0.5, 0.5, display_text, | |
fontsize=base_fontsize, | |
fontweight='bold', | |
ha='center', | |
va='center', | |
transform=ax.transAxes) # 使用相对坐标 | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
else: | |
print(f"Warning: Index out of bounds - idx={idx}, row_grid={row_grid}, col_grid={col_grid}") | |
# 添加日期信息到第一个子图的顶部 | |
ax_date = fig.add_subplot(gs[0, :]) # 跨越第一行的所有列 | |
ax_date.text(0.01, 0.5, f"{date_str} {title}", # 调整位置和对齐 | |
fontsize=base_fontsize * 0.5, # 调整日期字体大小 | |
color=DATE_COLOR, | |
fontweight='bold', | |
ha='left', | |
va='center', | |
transform=ax_date.transAxes) | |
for spine in ax_date.spines.values(): | |
spine.set_visible(False) | |
ax_date.set_xticks([]) | |
ax_date.set_yticks([]) | |
ax_date.set_facecolor('none') # 使背景透明 | |
# --- 处理图形 --- | |
process_figure(png_fig) | |
process_figure(pdf_fig, is_pdf=True) | |
# --- 保存 PNG --- | |
png_buffer = io.BytesIO() | |
# 可以尝试减小 pad_inches, even set to 0 | |
png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02) | |
png_buffer.seek(0) | |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode() | |
plt.close(png_fig) | |
# --- 保存 PDF --- | |
pdf_buffer = io.BytesIO() | |
with PdfPages(pdf_buffer) as pdf: | |
# 可以尝试减小 pad_inches, even set to 0 | |
pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.02) | |
pdf_buffer.seek(0) | |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode() | |
plt.close(pdf_fig) | |
return { | |
'png': f'data:image/png;base64,{png_base64}', | |
'pdf': f'data:application/pdf;base64,{pdf_base64}' | |
} | |
# --- 新增 PDF 显示函数 --- | |
def display_pdf(base64_pdf): | |
"""在Streamlit中嵌入显示PDF""" | |
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>' | |
return pdf_display | |
# Streamlit 界面 | |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide") | |
st.title("散厅时间快捷打印") | |
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"]) | |
if uploaded_file: | |
part1, part2, date_str = process_schedule(uploaded_file) | |
if part1 is not None and part2 is not None: | |
# 生成包含 PNG 和 PDF 的字典 | |
part1_output = create_print_layout(part1, "A", date_str) | |
part2_output = create_print_layout(part2, "C", date_str) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("白班散场预览(时间 ≤ 17:30)") | |
if part1_output: | |
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"]) | |
with tab1_1: | |
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True) | |
with tab1_2: | |
st.image(part1_output['png']) | |
else: | |
st.info("白班部分没有数据") | |
with col2: | |
st.subheader("夜班散场预览(时间 > 17:30)") | |
if part2_output: | |
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"]) | |
with tab2_1: | |
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True) | |
with tab2_2: | |
st.image(part2_output['png']) | |
else: | |
st.info("夜班部分没有数据") | |