Tamil Eniyan
commited on
Commit
·
bd4d03b
1
Parent(s):
a42855b
Updated application with optimizations
Browse files
app.py
CHANGED
@@ -3,30 +3,23 @@ import faiss
|
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
import json
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
from transformers import (
|
8 |
-
pipeline,
|
9 |
-
RagTokenizer,
|
10 |
-
RagRetriever,
|
11 |
-
RagSequenceForGeneration,
|
12 |
-
)
|
13 |
import torch
|
|
|
|
|
14 |
|
15 |
# ========================
|
16 |
# File Names & Model Names
|
17 |
# ========================
|
18 |
-
|
19 |
INDEX_FILE = "faiss_index.index"
|
20 |
CHUNKS_FILE = "chunks.pkl"
|
21 |
CURATED_QA_FILE = "curated_qa_pairs.json"
|
22 |
|
23 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
24 |
-
QA_MODEL_NAME = "deepset/roberta-large-squad2"
|
25 |
|
26 |
# ========================
|
27 |
# Loading Functions (cached)
|
28 |
# ========================
|
29 |
-
|
30 |
@st.cache_resource
|
31 |
def load_index_and_chunks():
|
32 |
try:
|
@@ -40,217 +33,73 @@ def load_index_and_chunks():
|
|
40 |
|
41 |
@st.cache_resource
|
42 |
def load_embedding_model():
|
43 |
-
|
44 |
-
model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
45 |
-
return model
|
46 |
-
except Exception as e:
|
47 |
-
st.error(f"Error loading embedding model: {e}")
|
48 |
-
return None
|
49 |
|
50 |
@st.cache_resource
|
51 |
def load_qa_pipeline():
|
52 |
-
|
53 |
-
qa_pipe = pipeline("question-answering", model=QA_MODEL_NAME, tokenizer=QA_MODEL_NAME)
|
54 |
-
return qa_pipe
|
55 |
-
except Exception as e:
|
56 |
-
st.error(f"Error loading QA pipeline: {e}")
|
57 |
-
return None
|
58 |
|
59 |
@st.cache_resource
|
60 |
-
def load_curated_qa_pairs(
|
61 |
try:
|
62 |
-
with open(
|
63 |
-
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
st.error(f"Error loading curated Q/A pairs from JSON: {e}")
|
67 |
return []
|
68 |
|
69 |
# ========================================
|
70 |
-
#
|
71 |
# ========================================
|
72 |
|
73 |
-
def
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
# Build a temporary FAISS index for the curated questions
|
81 |
-
dimension = curated_embeddings.shape[1]
|
82 |
-
curated_index = faiss.IndexFlatL2(dimension)
|
83 |
-
curated_index.add(curated_embeddings)
|
84 |
-
|
85 |
-
k = 1
|
86 |
-
distances, indices = curated_index.search(query_embedding, k)
|
87 |
-
|
88 |
-
if distances[0][0] < threshold:
|
89 |
-
idx = indices[0][0]
|
90 |
-
return curated_qa[idx]
|
91 |
-
except Exception as e:
|
92 |
-
st.error(f"Error retrieving curated Q/A pair: {e}")
|
93 |
-
return None
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
class CustomRagRetriever(RagRetriever):
|
99 |
-
"""
|
100 |
-
A custom retriever that uses your FAISS index and passages.
|
101 |
-
It encodes the query with the provided embedding model,
|
102 |
-
searches your FAISS index, and returns the top retrieved documents.
|
103 |
-
"""
|
104 |
-
def __init__(self, config, faiss_index, passages, embed_model, tokenizer, n_docs=5):
|
105 |
-
self.faiss_index = faiss_index # Your custom FAISS index of PDF embeddings
|
106 |
-
self.passages = passages # List of PDF passage texts
|
107 |
-
self.embed_model = embed_model # Embedding model used for encoding queries
|
108 |
-
self.n_docs = n_docs # Number of top documents to retrieve
|
109 |
-
self.tokenizer = tokenizer # Save tokenizer for internal use if needed
|
110 |
-
# Override init_retrieval to bypass loading default passages.
|
111 |
-
self.init_retrieval = lambda: None
|
112 |
-
# Call the parent constructor with the required arguments.
|
113 |
-
super().__init__(config, question_encoder_tokenizer=tokenizer, generator_tokenizer=tokenizer)
|
114 |
-
|
115 |
-
def retrieve(self, query, n_docs=None):
|
116 |
-
try:
|
117 |
-
if n_docs is None:
|
118 |
-
n_docs = self.n_docs
|
119 |
-
# Encode the query using the embedding model
|
120 |
-
query_embedding = self.embed_model.encode([query]).astype("float32")
|
121 |
-
distances, indices = self.faiss_index.search(query_embedding, n_docs)
|
122 |
-
retrieved_docs = [self.passages[i] for i in indices[0]]
|
123 |
-
return {
|
124 |
-
"doc_ids": indices,
|
125 |
-
"doc_scores": distances,
|
126 |
-
"retrieved_docs": retrieved_docs,
|
127 |
-
}
|
128 |
-
except Exception as e:
|
129 |
-
st.error(f"Error in custom retrieval: {e}")
|
130 |
-
return {"doc_ids": None, "doc_scores": None, "retrieved_docs": []}
|
131 |
|
132 |
-
#
|
133 |
-
|
134 |
-
|
135 |
-
@st.cache_resource
|
136 |
-
def load_rag_model(_faiss_index, passages, _embed_model):
|
137 |
-
try:
|
138 |
-
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
139 |
-
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
140 |
-
|
141 |
-
custom_retriever = CustomRagRetriever(
|
142 |
-
config=rag_model.config,
|
143 |
-
faiss_index=_faiss_index,
|
144 |
-
passages=passages,
|
145 |
-
embed_model=_embed_model,
|
146 |
-
tokenizer=tokenizer,
|
147 |
-
n_docs=5
|
148 |
-
)
|
149 |
-
rag_model.set_retriever(custom_retriever)
|
150 |
-
return tokenizer, rag_model
|
151 |
-
except Exception as e:
|
152 |
-
st.error(f"Error loading RAG model with custom retriever: {e}")
|
153 |
-
return None, None
|
154 |
-
|
155 |
-
def generate_rag_answer(query, tokenizer, rag_model):
|
156 |
-
try:
|
157 |
-
inputs = tokenizer(query, return_tensors="pt")
|
158 |
-
with torch.no_grad():
|
159 |
-
generated_ids = rag_model.generate(**inputs)
|
160 |
-
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
161 |
-
return answer
|
162 |
-
except Exception as e:
|
163 |
-
st.error(f"Error generating answer with RAG model: {e}")
|
164 |
-
return ""
|
165 |
|
166 |
# ========================================
|
167 |
-
# Main Streamlit
|
168 |
# ========================================
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
return
|
184 |
-
|
185 |
-
with st.spinner("Loading QA pipeline..."):
|
186 |
-
qa_pipeline = load_qa_pipeline()
|
187 |
-
if qa_pipeline is None:
|
188 |
-
return
|
189 |
-
|
190 |
-
with st.spinner("Loading curated Q/A pairs..."):
|
191 |
-
curated_qa_pairs = load_curated_qa_pairs()
|
192 |
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
if
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
query_embedding = embed_model.encode([query]).astype("float32")
|
202 |
-
k = 3 # Retrieve top 3 chunks
|
203 |
-
distances, indices = index.search(query_embedding, k)
|
204 |
-
pdf_context = ""
|
205 |
-
for idx in indices[0]:
|
206 |
-
pdf_context += chunks[idx] + "\n"
|
207 |
-
except Exception as e:
|
208 |
-
st.error(f"Error retrieving PDF context: {e}")
|
209 |
-
return
|
210 |
-
|
211 |
-
base_context = st.session_state.conversation_history + "\n"
|
212 |
-
|
213 |
-
# --- Option 1: Use RAG Model with Custom Retriever ---
|
214 |
-
if st.button("Use RAG Model with Custom Retriever"):
|
215 |
-
with st.spinner("Generating answer using RAG model..."):
|
216 |
-
tokenizer_rag, rag_model = load_rag_model(index, chunks, embed_model)
|
217 |
-
if tokenizer_rag is None or rag_model is None:
|
218 |
-
return
|
219 |
-
rag_answer = generate_rag_answer(query, tokenizer_rag, rag_model)
|
220 |
-
st.write("**RAG Model Answer:**")
|
221 |
-
st.write(rag_answer)
|
222 |
-
st.session_state.conversation_history += f"AI (RAG): {rag_answer}\n"
|
223 |
-
return
|
224 |
-
|
225 |
-
# --- Option 2: Use Standard QA Pipeline with Curated Q/A Pairs ---
|
226 |
-
with st.spinner("Checking for curated Q/A pair..."):
|
227 |
-
curated_pair = get_curated_pair(query, curated_qa_pairs, embed_model)
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
st.session_state.conversation_history += f"AI: {answer}\n"
|
236 |
-
return
|
237 |
-
else:
|
238 |
-
context_to_use = base_context + pdf_context
|
239 |
-
else:
|
240 |
-
context_to_use = base_context + pdf_context
|
241 |
-
|
242 |
-
with st.expander("Show Full PDF Context"):
|
243 |
-
st.write(pdf_context)
|
244 |
-
|
245 |
-
st.subheader("Answer:")
|
246 |
-
with st.spinner("Generating answer using standard QA pipeline..."):
|
247 |
-
try:
|
248 |
-
result = qa_pipeline(question=query, context=context_to_use)
|
249 |
-
answer = result["answer"]
|
250 |
-
st.write(answer)
|
251 |
-
st.session_state.conversation_history += f"AI: {answer}\n"
|
252 |
-
except Exception as e:
|
253 |
-
st.error(f"Error generating answer using QA pipeline: {e}")
|
254 |
-
|
255 |
-
if __name__ == "__main__":
|
256 |
-
main()
|
|
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from transformers import pipeline, RagTokenizer, RagRetriever, RagSequenceForGeneration
|
9 |
|
10 |
# ========================
|
11 |
# File Names & Model Names
|
12 |
# ========================
|
|
|
13 |
INDEX_FILE = "faiss_index.index"
|
14 |
CHUNKS_FILE = "chunks.pkl"
|
15 |
CURATED_QA_FILE = "curated_qa_pairs.json"
|
16 |
|
17 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
18 |
+
QA_MODEL_NAME = "deepset/roberta-large-squad2"
|
19 |
|
20 |
# ========================
|
21 |
# Loading Functions (cached)
|
22 |
# ========================
|
|
|
23 |
@st.cache_resource
|
24 |
def load_index_and_chunks():
|
25 |
try:
|
|
|
33 |
|
34 |
@st.cache_resource
|
35 |
def load_embedding_model():
|
36 |
+
return SentenceTransformer(EMBEDDING_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@st.cache_resource
|
39 |
def load_qa_pipeline():
|
40 |
+
return pipeline("question-answering", model=QA_MODEL_NAME, tokenizer=QA_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
@st.cache_resource
|
43 |
+
def load_curated_qa_pairs():
|
44 |
try:
|
45 |
+
with open(CURATED_QA_FILE, "r", encoding="utf-8") as f:
|
46 |
+
return json.load(f)
|
47 |
+
except:
|
|
|
|
|
48 |
return []
|
49 |
|
50 |
# ========================================
|
51 |
+
# Chatbot Interface & Conversation Handling
|
52 |
# ========================================
|
53 |
|
54 |
+
def display_conversation():
|
55 |
+
"""Displays conversation history in a structured chat format."""
|
56 |
+
for entry in st.session_state.conversation_history:
|
57 |
+
role, message = entry
|
58 |
+
with st.chat_message(role):
|
59 |
+
st.write(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
def add_to_conversation(role, message):
|
62 |
+
"""Adds a message to conversation history."""
|
63 |
+
st.session_state.conversation_history.append((role, message))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Initialize conversation history
|
66 |
+
if "conversation_history" not in st.session_state:
|
67 |
+
st.session_state.conversation_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# ========================================
|
70 |
+
# Main Streamlit Chat UI
|
71 |
# ========================================
|
72 |
+
st.title("Takalama - AI Chat")
|
73 |
+
|
74 |
+
# Load models & data
|
75 |
+
index, chunks = load_index_and_chunks()
|
76 |
+
embed_model = load_embedding_model()
|
77 |
+
qa_pipeline = load_qa_pipeline()
|
78 |
+
curated_qa_pairs = load_curated_qa_pairs()
|
79 |
+
|
80 |
+
display_conversation()
|
81 |
+
|
82 |
+
# User Input
|
83 |
+
user_query = st.chat_input("Ask a question about the document...")
|
84 |
+
if user_query:
|
85 |
+
add_to_conversation("user", user_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Check for curated Q/A pair
|
88 |
+
answer = None
|
89 |
+
for pair in curated_qa_pairs:
|
90 |
+
if user_query.lower() in pair["question"].lower():
|
91 |
+
answer = pair["answer"]
|
92 |
+
break
|
93 |
|
94 |
+
if not answer:
|
95 |
+
# Retrieve relevant context
|
96 |
+
query_embedding = embed_model.encode([user_query]).astype("float32")
|
97 |
+
distances, indices = index.search(query_embedding, 3)
|
98 |
+
pdf_context = "\n".join(chunks[idx] for idx in indices[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Generate an answer using the QA pipeline
|
101 |
+
response = qa_pipeline(question=user_query, context=pdf_context)
|
102 |
+
answer = response.get("answer", "I couldn't find an answer to that.")
|
103 |
+
|
104 |
+
add_to_conversation("assistant", answer)
|
105 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|