Tamil Eniyan
commited on
Commit
·
076c725
1
Parent(s):
ae479fd
Add application file
Browse files- app.py +63 -2
- chunks.pkl +3 -0
- faiss_index.index +0 -0
- requirements.txt +8 -0
app.py
CHANGED
@@ -1,4 +1,65 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
+
# File names for saved data
|
9 |
+
INDEX_FILE = "faiss_index.index"
|
10 |
+
CHUNKS_FILE = "chunks.pkl"
|
11 |
+
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
12 |
+
QA_MODEL_NAME = "deepset/roberta-base-squad2" # You can change this to any Hugging Face QA model
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def load_index_and_chunks():
|
16 |
+
index = faiss.read_index(INDEX_FILE)
|
17 |
+
with open(CHUNKS_FILE, "rb") as f:
|
18 |
+
chunks = pickle.load(f)
|
19 |
+
return index, chunks
|
20 |
+
|
21 |
+
@st.cache_resource
|
22 |
+
def load_embedding_model():
|
23 |
+
return SentenceTransformer(EMBEDDING_MODEL_NAME)
|
24 |
+
|
25 |
+
@st.cache_resource
|
26 |
+
def load_qa_pipeline():
|
27 |
+
# This QA pipeline expects a question and a context
|
28 |
+
return pipeline("question-answering", model=QA_MODEL_NAME, tokenizer=QA_MODEL_NAME)
|
29 |
+
|
30 |
+
def main():
|
31 |
+
st.title("PDF Question-Answering App")
|
32 |
+
|
33 |
+
# Load FAISS index, chunks, and models
|
34 |
+
index, chunks = load_index_and_chunks()
|
35 |
+
embed_model = load_embedding_model()
|
36 |
+
qa_pipeline = load_qa_pipeline()
|
37 |
+
|
38 |
+
st.write("Enter your question about the PDF document:")
|
39 |
+
query = st.text_input("Question:")
|
40 |
+
|
41 |
+
if query:
|
42 |
+
# Encode the query using the same SentenceTransformer model
|
43 |
+
query_embedding = embed_model.encode([query]).astype('float32')
|
44 |
+
|
45 |
+
# Retrieve top k relevant chunks
|
46 |
+
k = 3
|
47 |
+
distances, indices = index.search(query_embedding, k)
|
48 |
+
|
49 |
+
st.subheader("Retrieved Context:")
|
50 |
+
context = ""
|
51 |
+
for idx in indices[0]:
|
52 |
+
context_piece = chunks[idx]
|
53 |
+
context += context_piece + " "
|
54 |
+
st.write(context_piece)
|
55 |
+
|
56 |
+
st.subheader("Answer:")
|
57 |
+
try:
|
58 |
+
# Use the QA pipeline to generate an answer based on the combined context
|
59 |
+
result = qa_pipeline(question=query, context=context)
|
60 |
+
st.write(result["answer"])
|
61 |
+
except Exception as e:
|
62 |
+
st.error(f"Error generating answer: {e}")
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
main()
|
chunks.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7c1ab50a97f033917bd851977a80740d1571050d23783ded500413d58dc9c3e
|
3 |
+
size 9141
|
faiss_index.index
ADDED
Binary file (4.65 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
faiss-cpu
|
3 |
+
numpy
|
4 |
+
sentence-transformers
|
5 |
+
transformers
|
6 |
+
PyPDF2
|
7 |
+
nltk
|
8 |
+
torch
|