Spaces:
Runtime error
Runtime error
Commit
·
2255e63
1
Parent(s):
9892c47
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import re
|
4 |
+
import pathlib
|
5 |
+
|
6 |
+
import requests
|
7 |
+
import openai
|
8 |
+
from embedchain import App
|
9 |
+
from serpapi import GoogleSearch
|
10 |
+
from pptx import Presentation
|
11 |
+
from pptx.util import Inches
|
12 |
+
|
13 |
+
from pptx import Presentation
|
14 |
+
from pptx.util import Inches, Pt
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
import qrcode
|
21 |
+
from pathlib import Path
|
22 |
+
from multiprocessing import cpu_count
|
23 |
+
import requests
|
24 |
+
import io
|
25 |
+
import os
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
|
29 |
+
from diffusers import (
|
30 |
+
StableDiffusionControlNetPipeline,
|
31 |
+
ControlNetModel,
|
32 |
+
DDIMScheduler,
|
33 |
+
DPMSolverMultistepScheduler,
|
34 |
+
DEISMultistepScheduler,
|
35 |
+
HeunDiscreteScheduler,
|
36 |
+
EulerDiscreteScheduler,
|
37 |
+
EulerAncestralDiscreteScheduler,
|
38 |
+
)
|
39 |
+
|
40 |
+
def gpt(user_prompt: str) -> str:
|
41 |
+
response = openai.Completion.create(
|
42 |
+
model="text-davinci-003",
|
43 |
+
prompt=user_prompt,
|
44 |
+
temperature=0,
|
45 |
+
max_tokens=200,
|
46 |
+
top_p=1,
|
47 |
+
frequency_penalty=0,
|
48 |
+
presence_penalty=0)
|
49 |
+
return response["choices"][0]["text"]
|
50 |
+
|
51 |
+
def get_results(query:str, topic:str,index=0)->list[str]:
|
52 |
+
combined_q = gpt(f'combine these "{query}" + "{topic}" words and generate one heading')
|
53 |
+
print(f'{query = }, {topic = }, {combined_q = }')
|
54 |
+
|
55 |
+
try:
|
56 |
+
params = {
|
57 |
+
"engine": "google",
|
58 |
+
"q": combined_q,
|
59 |
+
"api_key": os.environ[f'SERPAPI_API_KEY{index}']
|
60 |
+
}
|
61 |
+
search = GoogleSearch(params)
|
62 |
+
results = search.get_dict()
|
63 |
+
except Exception as e:
|
64 |
+
print(e)
|
65 |
+
get_results(query, topic,index=index+1)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
organic_results = results["organic_results"]
|
70 |
+
return organic_results
|
71 |
+
|
72 |
+
def extract_points(query:str, topic:str)->list[str]:
|
73 |
+
# print('--Sleep--')
|
74 |
+
time.sleep(60)
|
75 |
+
organic_results = get_results(query, topic)
|
76 |
+
embd_chain = App()
|
77 |
+
for index, dct in enumerate(organic_results):
|
78 |
+
try:
|
79 |
+
embd_chain.add('web_page',dct['link'])
|
80 |
+
except requests.exceptions.SSLError:
|
81 |
+
continue
|
82 |
+
except openai.error.RateLimitError:
|
83 |
+
break
|
84 |
+
print('--sleep--')
|
85 |
+
time.sleep(60)
|
86 |
+
embd_chain_q = embd_chain.query(f'highlight 7 important points')
|
87 |
+
|
88 |
+
return
|
89 |
+
# Add the title slide
|
90 |
+
|
91 |
+
def add_slide(prs, title, content, title_font_size=Pt(36), content_font_size=Pt(18)):
|
92 |
+
slide_layout = prs.slide_layouts[1] # Use the layout for "Title and Content"
|
93 |
+
slide = prs.slides.add_slide(slide_layout)
|
94 |
+
|
95 |
+
# Set the title and content text
|
96 |
+
slide.shapes.title.text = title
|
97 |
+
text_box = slide.placeholders[1]
|
98 |
+
text_box.text = content
|
99 |
+
|
100 |
+
# Change the font size for title and content text
|
101 |
+
title_text_frame = slide.shapes.title.text_frame
|
102 |
+
content_text_frame = text_box.text_frame
|
103 |
+
for paragraph in title_text_frame.paragraphs:
|
104 |
+
for run in paragraph.runs:
|
105 |
+
run.font.size = title_font_size
|
106 |
+
|
107 |
+
for paragraph in content_text_frame.paragraphs:
|
108 |
+
for run in paragraph.runs:
|
109 |
+
run.font.size = content_font_size
|
110 |
+
|
111 |
+
|
112 |
+
def add_title_slide(prs, title, title_font_size=Pt(44)):
|
113 |
+
slide_layout = prs.slide_layouts[0] # Use the layout for "Title Slide"
|
114 |
+
slide = prs.slides.add_slide(slide_layout)
|
115 |
+
|
116 |
+
# Set the title and subtitle text
|
117 |
+
slide.shapes.title.text = title
|
118 |
+
|
119 |
+
|
120 |
+
# Change the font size for title and subtitle text
|
121 |
+
title_text_frame = slide.shapes.title.text_frame
|
122 |
+
|
123 |
+
for paragraph in title_text_frame.paragraphs:
|
124 |
+
for run in paragraph.runs:
|
125 |
+
run.font.size = title_font_size
|
126 |
+
|
127 |
+
|
128 |
+
def main(user_query:str)->dict[str, str]:
|
129 |
+
res = gpt(f'You are assisting me in creating a presentation on "{user_query}" Please generate 5 informative side headings for the slides. Each heading should be concise and reflect a key aspect of the topic.')
|
130 |
+
topics = re.sub(r'[\d.]','',res.strip()).split('\n')
|
131 |
+
print(f'{topics = }')
|
132 |
+
ppt_points = { topic: extract_points(topic, user_query)
|
133 |
+
for topic in topics}
|
134 |
+
prs = Presentation()
|
135 |
+
add_title_slide(prs,user_query, title_font_size=Pt(44))
|
136 |
+
|
137 |
+
# Data for content slides
|
138 |
+
|
139 |
+
# Adding each key-value pair as a slide in the presentation with custom font sizes
|
140 |
+
for key, value in ppt_points.items():
|
141 |
+
add_slide(prs, key, value, title_font_size=Pt(36), content_font_size=Pt(18))
|
142 |
+
|
143 |
+
# Save the presentation
|
144 |
+
prs.save(f'{user_query}.pptx')
|
145 |
+
|
146 |
+
return f'{user_query}.pptx'
|
147 |
+
|
148 |
+
controlnet = ControlNetModel.from_pretrained(
|
149 |
+
"monster-labs/control_v1p_sd15_qrcode_monster",
|
150 |
+
torch_dtype=torch.float16
|
151 |
+
|
152 |
+
).to('cpu')
|
153 |
+
|
154 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
155 |
+
"runwayml/stable-diffusion-v1-5",
|
156 |
+
controlnet=controlnet,
|
157 |
+
safety_checker=None,
|
158 |
+
torch_dtype=torch.float16
|
159 |
+
|
160 |
+
|
161 |
+
).to('cuda')
|
162 |
+
pipe.enable_xformers_memory_efficient_attention()
|
163 |
+
|
164 |
+
|
165 |
+
SAMPLER_MAP = {
|
166 |
+
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
167 |
+
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
|
168 |
+
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
|
169 |
+
"Euler a": lambda config: EulerAncestralDiscreteScheduler.from_config(config),
|
170 |
+
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
171 |
+
"DDIM": lambda config: DDIMScheduler.from_config(config),
|
172 |
+
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
|
173 |
+
}
|
174 |
+
|
175 |
+
|
176 |
+
def create_code(content: str):
|
177 |
+
qr = qrcode.QRCode(
|
178 |
+
version=1,
|
179 |
+
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
180 |
+
box_size=16,
|
181 |
+
border=0,
|
182 |
+
)
|
183 |
+
qr.add_data(content)
|
184 |
+
qr.make(fit=True)
|
185 |
+
img = qr.make_image(fill_color="black", back_color="white")
|
186 |
+
|
187 |
+
# find smallest image size multiple of 256 that can fit qr
|
188 |
+
offset_min = 8 * 16
|
189 |
+
w, h = img.size
|
190 |
+
w = (w + 255 + offset_min) // 256 * 256
|
191 |
+
h = (h + 255 + offset_min) // 256 * 256
|
192 |
+
if w > 1024:
|
193 |
+
raise gr.Error("QR code is too large, please use a shorter content")
|
194 |
+
bg = Image.new('L', (w, h), 128)
|
195 |
+
|
196 |
+
# align on 16px grid
|
197 |
+
coords = ((w - img.size[0]) // 2 // 16 * 16,
|
198 |
+
(h - img.size[1]) // 2 // 16 * 16)
|
199 |
+
bg.paste(img, coords)
|
200 |
+
return bg
|
201 |
+
|
202 |
+
|
203 |
+
def inference(
|
204 |
+
qr_code_content: str,
|
205 |
+
prompt: str,
|
206 |
+
negative_prompt: str,
|
207 |
+
guidance_scale: float = 10.0,
|
208 |
+
controlnet_conditioning_scale: float = 2.0,
|
209 |
+
seed: int = -1,
|
210 |
+
sampler="Euler a",
|
211 |
+
):
|
212 |
+
|
213 |
+
|
214 |
+
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
|
215 |
+
|
216 |
+
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
217 |
+
|
218 |
+
print("Generating QR Code from content")
|
219 |
+
qrcode_image = create_code(qr_code_content)
|
220 |
+
|
221 |
+
# hack due to gradio examples
|
222 |
+
init_image = qrcode_image
|
223 |
+
|
224 |
+
out = pipe(
|
225 |
+
prompt=prompt,
|
226 |
+
negative_prompt=negative_prompt,
|
227 |
+
image=qrcode_image,
|
228 |
+
width=qrcode_image.width,
|
229 |
+
height=qrcode_image.height,
|
230 |
+
guidance_scale=float(guidance_scale),
|
231 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
232 |
+
|
233 |
+
num_inference_steps=40,
|
234 |
+
)
|
235 |
+
return out.images[0]
|
236 |
+
|
237 |
+
import gradio as gr
|
238 |
+
|
239 |
+
|
240 |
+
with gr.Blocks() as demo:
|
241 |
+
with gr.Tab('Presentation'):
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column():
|
244 |
+
txt = gr.Textbox(label="Your Query")
|
245 |
+
with gr.Column():
|
246 |
+
file = gr.File()
|
247 |
+
|
248 |
+
btn = gr.Button('Create Presentation')
|
249 |
+
|
250 |
+
|
251 |
+
btn.click(main, txt, file)
|
252 |
+
with gr.Tab('Share'):
|
253 |
+
gr.Markdown('This feature needs GPU to run')
|
254 |
+
with gr.Row():
|
255 |
+
with gr.Column():
|
256 |
+
qr_code_content = gr.Textbox(
|
257 |
+
label="QR Code Content or URL",
|
258 |
+
info="The text you want to encode into the QR code",
|
259 |
+
value="",
|
260 |
+
)
|
261 |
+
|
262 |
+
prompt = gr.Textbox(
|
263 |
+
label="Prompt",
|
264 |
+
info="Prompt that guides the generation towards",
|
265 |
+
)
|
266 |
+
negative_prompt = gr.Textbox(
|
267 |
+
label="Negative Prompt",
|
268 |
+
value="ugly, disfigured, low quality, blurry, nsfw",
|
269 |
+
info="Prompt that guides the generation away from",
|
270 |
+
)
|
271 |
+
|
272 |
+
with gr.Accordion(
|
273 |
+
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
|
274 |
+
open=True,
|
275 |
+
):
|
276 |
+
controlnet_conditioning_scale = gr.Slider(
|
277 |
+
minimum=0.5,
|
278 |
+
maximum=2.5,
|
279 |
+
step=0.01,
|
280 |
+
value=1.5,
|
281 |
+
label="Controlnet Conditioning Scale",
|
282 |
+
info="""Controls the readability/creativity of the QR code.
|
283 |
+
High values: The generated QR code will be more readable.
|
284 |
+
Low values: The generated QR code will be more creative.
|
285 |
+
"""
|
286 |
+
)
|
287 |
+
guidance_scale = gr.Slider(
|
288 |
+
minimum=0.0,
|
289 |
+
maximum=25.0,
|
290 |
+
step=0.25,
|
291 |
+
value=7,
|
292 |
+
label="Guidance Scale",
|
293 |
+
info="Controls the amount of guidance the text prompt guides the image generation"
|
294 |
+
)
|
295 |
+
sampler = gr.Dropdown(choices=list(
|
296 |
+
SAMPLER_MAP.keys()), value="Euler a", label="Sampler")
|
297 |
+
seed = gr.Number(
|
298 |
+
minimum=-1,
|
299 |
+
maximum=9999999999,
|
300 |
+
step=1,
|
301 |
+
value=2313123,
|
302 |
+
label="Seed",
|
303 |
+
randomize=True,
|
304 |
+
info="Seed for the random number generator. Set to -1 for a random seed"
|
305 |
+
)
|
306 |
+
with gr.Row():
|
307 |
+
run_btn = gr.Button("Run")
|
308 |
+
with gr.Column():
|
309 |
+
result_image = gr.Image(label="Result Image", elem_id="result_image")
|
310 |
+
run_btn.click(
|
311 |
+
inference,
|
312 |
+
inputs=[
|
313 |
+
qr_code_content,
|
314 |
+
prompt,
|
315 |
+
negative_prompt,
|
316 |
+
guidance_scale,
|
317 |
+
controlnet_conditioning_scale,
|
318 |
+
seed,
|
319 |
+
sampler,
|
320 |
+
],
|
321 |
+
outputs=[result_image],
|
322 |
+
)
|
323 |
+
|
324 |
+
gr.Examples(
|
325 |
+
examples=[
|
326 |
+
[
|
327 |
+
"test",
|
328 |
+
"Baroque rococo architecture, architectural photography, post apocalyptic New York, hyperrealism, [roots], hyperrealistic, octane render, cinematic, hyper detailed, 8K",
|
329 |
+
"",
|
330 |
+
7,
|
331 |
+
1.6,
|
332 |
+
2592353769,
|
333 |
+
"Euler a",
|
334 |
+
],
|
335 |
+
[
|
336 |
+
"https://qrcodemonster.art",
|
337 |
+
"a centered render of an ancient tree covered in bio - organic micro organisms growing in a mystical setting, cinematic, beautifully lit, by tomasz alen kopera and peter mohrbacher and craig mullins, 3d, trending on artstation, octane render, 8k",
|
338 |
+
"",
|
339 |
+
7,
|
340 |
+
1.57,
|
341 |
+
259235398,
|
342 |
+
"Euler a",
|
343 |
+
],
|
344 |
+
[
|
345 |
+
"test",
|
346 |
+
"3 cups of coffee with coffee beans around",
|
347 |
+
"",
|
348 |
+
7,
|
349 |
+
1.95,
|
350 |
+
1889601353,
|
351 |
+
"Euler a",
|
352 |
+
],
|
353 |
+
[
|
354 |
+
"https://huggingface.co",
|
355 |
+
"A top view picture of a sandy beach with a sand castle, beautiful lighting, 8k, highly detailed",
|
356 |
+
"sky",
|
357 |
+
7,
|
358 |
+
1.15,
|
359 |
+
46200,
|
360 |
+
"Euler a",
|
361 |
+
],
|
362 |
+
[
|
363 |
+
"test",
|
364 |
+
"A top view picture of a sandy beach, organic shapes, beautiful lighting, bumps and shadows, 8k, highly detailed",
|
365 |
+
"sky, water, squares",
|
366 |
+
7,
|
367 |
+
1.25,
|
368 |
+
46220,
|
369 |
+
"Euler a",
|
370 |
+
],
|
371 |
+
],
|
372 |
+
fn=inference,
|
373 |
+
inputs=[
|
374 |
+
qr_code_content,
|
375 |
+
prompt,
|
376 |
+
negative_prompt,
|
377 |
+
guidance_scale,
|
378 |
+
controlnet_conditioning_scale,
|
379 |
+
seed,
|
380 |
+
sampler,
|
381 |
+
],
|
382 |
+
outputs=[result_image],
|
383 |
+
|
384 |
+
)
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
demo.launch(debug=True)
|
389 |
+
|