Enferlain's picture
Update app.py
4b64b55 verified
raw
history blame
13.8 kB
import os
import json
import traceback
from typing import Optional, Tuple, Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image, PngImagePlugin
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from transformers import AutoProcessor, AutoModel, AutoImageProcessor
import gradio as gr
import math # Added math
# --- Device Setup ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Use float16 for vision model on CUDA for speed/memory, but head expects float32
VISION_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
HEAD_DTYPE = torch.float32 # Head usually trained/stable in float32
print(f"Using device: {DEVICE}")
print(f"Vision model dtype: {VISION_DTYPE}")
print(f"Head model dtype: {HEAD_DTYPE}")
# --- Model Definitions (Copied from hybrid_model.py) ---
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def _norm(self, x: torch.Tensor) -> torch.Tensor:
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self) -> str:
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class SwiGLUFFN(nn.Module):
def __init__(self, in_features: int, hidden_features: int = None, out_features: int = None, act_layer: nn.Module = nn.SiLU, dropout: float = 0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or int(in_features * 8 / 3 / 2 * 2 )
hidden_features = (hidden_features + 1) // 2 * 2
self.w12 = nn.Linear(in_features, hidden_features * 2, bias=False)
self.act = act_layer()
self.dropout1 = nn.Dropout(dropout)
self.w3 = nn.Linear(hidden_features, out_features, bias=False)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
gate_val, up_val = self.w12(x).chunk(2, dim=-1)
x = self.dropout1(self.act(gate_val) * up_val)
x = self.dropout2(self.w3(x))
return x
class ResBlockRMS(nn.Module):
def __init__(self, ch: int, dropout: float = 0.0, rms_norm_eps: float = 1e-6):
super().__init__()
self.norm = RMSNorm(ch, eps=rms_norm_eps)
self.ffn = SwiGLUFFN(in_features=ch, dropout=dropout)
def forward(self, x):
return x + self.ffn(self.norm(x))
class HybridHeadModel(nn.Module):
def __init__(self, features: int, hidden_dim: int = 1280, num_classes: int = 2, use_attention: bool = True,
num_attn_heads: int = 16, attn_dropout: float = 0.1, num_res_blocks: int = 3,
dropout_rate: float = 0.1, rms_norm_eps: float = 1e-6, output_mode: str = 'linear'):
super().__init__()
self.features = features; self.hidden_dim = hidden_dim; self.num_classes = num_classes
self.use_attention = use_attention; self.output_mode = output_mode.lower()
# --- Optional Self-Attention Layer ---
self.attention = None; self.norm_attn = None
if self.use_attention:
actual_num_heads = num_attn_heads # Adjust head logic needed here if features != 1152
# Simple head adjustment:
if features % num_attn_heads != 0:
possible_heads = [h for h in [1, 2, 4, 8, 16] if features % h == 0]
if not possible_heads: actual_num_heads = 1 # Fallback to 1 head if no divisors found
else: actual_num_heads = min(possible_heads, key=lambda x: abs(x-num_attn_heads))
if actual_num_heads != num_attn_heads: print(f"HybridHead Warning: Adjusting heads {num_attn_heads}->{actual_num_heads}")
self.attention = nn.MultiheadAttention(features, actual_num_heads, dropout=attn_dropout, batch_first=True, bias=True)
self.norm_attn = RMSNorm(features, eps=rms_norm_eps)
# --- MLP Head ---
mlp_layers = []
mlp_layers.append(nn.Linear(features, hidden_dim)); mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps))
for _ in range(num_res_blocks): mlp_layers.append(ResBlockRMS(hidden_dim, dropout=dropout_rate, rms_norm_eps=rms_norm_eps))
mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps))
down_proj_hidden = hidden_dim // 2
mlp_layers.append(SwiGLUFFN(hidden_dim, hidden_features=down_proj_hidden, out_features=down_proj_hidden, dropout=dropout_rate))
mlp_layers.append(RMSNorm(down_proj_hidden, eps=rms_norm_eps))
mlp_layers.append(nn.Linear(down_proj_hidden, num_classes))
self.mlp_head = nn.Sequential(*mlp_layers)
# --- Validate Output Mode ---
# (Warnings can be added here if desired, but functionality handled in forward)
def forward(self, x: torch.Tensor):
if self.use_attention and self.attention is not None:
x_seq = x.unsqueeze(1); attn_output, _ = self.attention(x_seq, x_seq, x_seq); x = self.norm_attn(x + attn_output.squeeze(1))
logits = self.mlp_head(x.to(HEAD_DTYPE)) # Ensure input to MLP has correct dtype
# --- Apply Final Activation ---
output = None
if self.output_mode == 'linear': output = logits
elif self.output_mode == 'sigmoid': output = torch.sigmoid(logits)
elif self.output_mode == 'softmax': output = F.softmax(logits, dim=-1)
elif self.output_mode == 'tanh_scaled': output = (torch.tanh(logits) + 1.0) / 2.0
else: raise RuntimeError(f"Invalid output_mode '{self.output_mode}'.")
if self.num_classes == 1 and output.ndim == 2 and output.shape[1] == 1: output = output.squeeze(-1)
return output
# --- Constants and Model Loading ---
# Option 1: Files are in the Space repo (e.g., in a 'model' folder)
# MODEL_DIR = "model"
# HEAD_MODEL_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000_s9K.safetensors"
# CONFIG_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000.config.json" # Assuming config matches base name
# HEAD_MODEL_PATH = os.path.join(MODEL_DIR, HEAD_MODEL_FILENAME)
# CONFIG_PATH = os.path.join(MODEL_DIR, CONFIG_FILENAME)
# Option 2: Download from Hub
# Replace with your HF username and repo name
HUB_REPO_ID = "Enferlain/lumi-classifier" # Or wherever you uploaded the model
# Use the specific checkpoint you want (e.g., s9k or the best_val one)
HEAD_MODEL_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000_s6K_best_val.safetensors"
# Usually config corresponds to the base run name, not a specific step
CONFIG_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000.config.json"
print("Downloading model files if necessary...")
try:
HEAD_MODEL_PATH = hf_hub_download(repo_id=HUB_REPO_ID, filename=HEAD_MODEL_FILENAME)
CONFIG_PATH = hf_hub_download(repo_id=HUB_REPO_ID, filename=CONFIG_FILENAME)
print("Files downloaded/found successfully.")
except Exception as e:
print(f"ERROR downloading files from {HUB_REPO_ID}: {e}")
print("Please ensure the files exist on the Hub or place them in a local 'model' folder.")
# Optionally exit or fallback
exit(1) # Exit if essential files aren't available
# --- Load Config ---
print(f"Loading config from: {CONFIG_PATH}")
config = {}
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = json.load(f)
except Exception as e:
print(f"ERROR loading config file: {e}"); exit(1)
# --- Load Vision Model ---
BASE_VISION_MODEL_NAME = config.get("base_vision_model", "google/siglip2-so400m-patch16-naflex")
print(f"Loading vision model: {BASE_VISION_MODEL_NAME}")
try:
hf_processor = AutoProcessor.from_pretrained(BASE_VISION_MODEL_NAME)
vision_model = AutoModel.from_pretrained(
BASE_VISION_MODEL_NAME, torch_dtype=VISION_DTYPE
).to(DEVICE).eval()
print("Vision model loaded.")
except Exception as e:
print(f"ERROR loading vision model: {e}"); exit(1)
# --- Load HybridHeadModel ---
print(f"Loading head model: {HEAD_MODEL_PATH}")
head_model = None
try:
state_dict = load_file(HEAD_MODEL_PATH, device='cpu')
# Infer details from config - use defaults matching the successful run
features = config.get("features", 1152)
num_classes = config.get("num_classes", 2) # Should be 2 for focal loss run
output_mode = config.get("output_mode", "linear") # Should be linear
hidden_dim = config.get("hidden_dim", 1280)
num_res_blocks = config.get("num_res_blocks", 3)
dropout_rate = config.get("dropout_rate", 0.3) # Use the high dropout from best run
use_attention = config.get("use_attention", True) # Use attention was likely True
num_attn_heads = config.get("num_attn_heads", 16)
attn_dropout = config.get("attn_dropout", 0.3) # Use the high dropout
rms_norm_eps= config.get("rms_norm_eps", 1e-6)
head_model = HybridHeadModel(
features=features, hidden_dim=hidden_dim, num_classes=num_classes,
use_attention=use_attention, num_attn_heads=num_attn_heads, attn_dropout=attn_dropout,
num_res_blocks=num_res_blocks, dropout_rate=dropout_rate, rms_norm_eps=rms_norm_eps,
output_mode=output_mode
)
missing, unexpected = head_model.load_state_dict(state_dict, strict=False)
if missing: print(f"Warning: Missing keys loading head: {missing}")
if unexpected: print(f"Warning: Unexpected keys loading head: {unexpected}")
head_model.to(DEVICE).eval()
print("Head model loaded.")
except Exception as e:
print(f"ERROR loading head model: {e}"); exit(1)
# --- Label Mapping ---
# Assume labels are '0': Bad, '1': Good from config or default
LABELS = config.get("labels", {'0': 'Bad Anatomy', '1': 'Good Anatomy'})
LABEL_NAMES = {
0: LABELS.get('0', 'Class 0'),
1: LABELS.get('1', 'Class 1')
}
print(f"Using Labels: {LABEL_NAMES}")
# --- Prediction Function ---
def predict_anatomy(image: Image.Image):
"""Takes PIL Image, returns dict of class probabilities."""
if image is None: return {"Error": "No image provided"}
try:
pil_image = image.convert("RGB")
# 1. Extract SigLIP NaFlex Embedding
with torch.no_grad():
inputs = hf_processor(images=[pil_image], return_tensors="pt", max_num_patches=1024)
pixel_values = inputs.get("pixel_values").to(device=DEVICE, dtype=VISION_DTYPE)
attention_mask = inputs.get("pixel_attention_mask").to(device=DEVICE)
spatial_shapes = inputs.get("spatial_shapes")
model_call_kwargs = {"pixel_values": pixel_values, "attention_mask": attention_mask,
"spatial_shapes": torch.tensor(spatial_shapes, dtype=torch.long).to(DEVICE)}
vision_model_component = getattr(vision_model, 'vision_model', vision_model) # Handle potential nesting
emb = vision_model_component(**model_call_kwargs).pooler_output
if emb is None: raise ValueError("Failed to get embedding.")
# L2 Norm
norm = torch.linalg.norm(emb.float(), dim=-1, keepdim=True).clamp(min=1e-8)
emb_normalized = emb / norm.to(emb.dtype)
# 2. Obtain Prediction from HybridHeadModel Head
with torch.no_grad():
prediction = head_model(emb_normalized.to(DEVICE, dtype=HEAD_DTYPE))
# 3. Format Output Probabilities
output_probs = {}
output_mode = getattr(head_model, 'output_mode', 'linear')
if head_model.num_classes == 1:
logit = prediction.squeeze().item()
prob_good = torch.sigmoid(torch.tensor(logit)).item() if output_mode == 'linear' else logit
output_probs[LABEL_NAMES[0]] = 1.0 - prob_good
output_probs[LABEL_NAMES[1]] = prob_good
elif head_model.num_classes == 2:
if output_mode == 'linear':
probs = F.softmax(prediction.squeeze().float(), dim=-1) # Use float for softmax stability
else: # Assume sigmoid or already softmax
probs = prediction.squeeze().float()
output_probs[LABEL_NAMES[0]] = probs[0].item()
output_probs[LABEL_NAMES[1]] = probs[1].item()
else:
output_probs["Error"] = f"Unsupported num_classes: {head_model.num_classes}"
# Convert to percentage strings for gr.Label maybe? Or keep floats? Keep floats.
# output_formatted = {k: f"{v:.1%}" for k, v in output_probs.items()}
return output_probs
except Exception as e:
print(f"Error during prediction: {e}\n{traceback.format_exc()}")
return {"Error": str(e)}
# --- Gradio Interface ---
DESCRIPTION = """
## Anatomy Flaw Classifier Demo ✨ (Based on SigLIP Naflex + Hybrid Head)
Upload an image to classify its anatomy as 'Good' or 'Bad'.
This model uses embeddings from **google/siglip2-so400m-patch16-naflex**
and a custom **HybridHeadModel** fine-tuned for anatomy classification.
"""
# Add example images if you have some in an 'examples' folder in the Space repo
EXAMPLE_DIR = "examples"
examples = []
if os.path.isdir(EXAMPLE_DIR):
examples = [os.path.join(EXAMPLE_DIR, fname) for fname in sorted(os.listdir(EXAMPLE_DIR)) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]
interface = gr.Interface(
fn=predict_anatomy,
inputs=gr.Image(type="pil", label="Input Image"),
outputs=gr.Label(label="Class Probabilities", num_top_classes=2), # Show top 2 classes
title="Lumi's Anatomy Classifier Demo",
description=DESCRIPTION,
examples=examples if examples else None,
allow_flagging="never",
cache_examples=False # Disable caching if examples change or loading is fast
)
if __name__ == "__main__":
interface.launch()