Spaces:
Runtime error
Runtime error
# Imports | |
import gradio as gr | |
import requests | |
import random | |
import spaces | |
import torch | |
import uuid | |
import json | |
import os | |
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler | |
from huggingface_hub import snapshot_download | |
from peft import PeftModel | |
from PIL import Image | |
# Pre-Initialize | |
DEVICE = "auto" | |
if DEVICE == "auto": | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
# Variables | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
MAX_SEED = 9007199254740991 | |
DEFAULT_INPUT = "" | |
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, blurry, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, title, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)" | |
DEFAULT_MODEL = "Default" | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_WIDTH = 1024 | |
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HF_TOKEN}" } | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) | |
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base") | |
repo_default.set_adapters(["base"], adapter_weights=[0.7]) | |
repo_pixel = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) | |
repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base") | |
repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2") | |
repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1]) | |
repo_large_path = snapshot_download(repo_id="stabilityai/stable-diffusion-3-medium", revision="refs/pr/26", token=HF_TOKEN) | |
repo_large_transformer_path = SD3Transformer2DModel.from_pretrained(repo_large_path, subfolder="transformer", torch_dtype=torch.float16) | |
repo_large_transformer = PeftModel.from_pretrained(repo_large_transformer_path, "jasperai/flash-sd3") | |
repo_customs = { | |
"Default": repo_default, | |
"Realistic": StableDiffusionXLPipeline.from_pretrained("ehristoforu/Visionix-alpha", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), | |
"Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), | |
"Pixel": repo_pixel, | |
"Large": StableDiffusion3Pipeline.from_pretrained(repo_large_path, transformer=repo_large_transformer, torch_dtype=torch.float16, use_safetensors=True), | |
} | |
repo_customs["Large"].scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(repo_large_path, subfolder="scheduler") | |
# Functions | |
def save_image(img, seed): | |
name = f"{seed}-{uuid.uuid4()}.png" | |
img.save(name) | |
return name | |
def get_seed(seed): | |
seed = seed.strip() | |
if seed.isdigit(): | |
return int(seed) | |
else: | |
return random.randint(0, MAX_SEED) | |
def api_classification_request(url, filename, headers): | |
with open(filename, "rb") as file: | |
data = file.read() | |
response = requests.request("POST", url, headers=headers or {}, data=data) | |
return json.loads(response.content.decode("utf-8")) | |
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None): | |
repo = repo_customs[model or "Default"] | |
filter_input = filter_input or "" | |
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT | |
steps_set = steps | |
guidance_set = guidance | |
seed = get_seed(seed) | |
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed) | |
if model == "Realistic": | |
steps_set = 25 | |
guidance_set = 7 | |
elif model == "Anime": | |
steps_set = 25 | |
guidance_set = 7 | |
elif model == "Pixel": | |
steps_set = 15 | |
guidance_set = 1.5 | |
elif model == "Large": | |
steps_set = 15 | |
guidance_set = 1.5 | |
else: | |
steps_set = 25 | |
guidance_set = 7 | |
if not steps: | |
steps = steps_set | |
if not guidance: | |
guidance = guidance_set | |
print(steps, guidance) | |
repo.to(DEVICE) | |
parameters = { | |
"prompt": input, | |
"negative_prompt": filter_input + negative_input, | |
"height": height, | |
"width": width, | |
"num_inference_steps": steps, | |
"guidance_scale": guidance, | |
"num_images_per_prompt": number, | |
"generator": torch.Generator().manual_seed(seed), | |
"output_type":"pil", | |
} | |
images = repo(**parameters).images | |
image_paths = [save_image(img, seed) for img in images] | |
print(image_paths) | |
nsfw_prediction = api_classification_request("https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection", image_paths[0], headers) | |
print(nsfw_prediction) | |
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction} | |
def cloud(): | |
print("[CLOUD] | Space maintained.") | |
# Initialize | |
with gr.Blocks(css=css) as main: | |
with gr.Column(): | |
gr.Markdown("🪄 Generate high quality images in all styles.") | |
with gr.Column(): | |
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") | |
filter_input = gr.Textbox(lines=1, value="", label="Input Filter") | |
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") | |
model = gr.Dropdown(choices=repo_customs.keys(), value="Default", label="Model") | |
height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") | |
width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") | |
steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Steps") | |
guidance = gr.Slider(minimum=0, maximum=100, step=0.1, value=5, label = "Guidance") | |
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number") | |
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") | |
submit = gr.Button("▶") | |
maintain = gr.Button("☁️") | |
with gr.Column(): | |
output = gr.Gallery(columns=1, label="Image") | |
output_2 = gr.Label() | |
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[output, output_2], queue=False) | |
maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
main.launch(show_api=True) |