import gradio as gr from transformers import pipeline # Load the BERT-Emotions-Classifier model classifier = pipeline("text-classification", model="ayoubkirouane/BERT-Emotions-Classifier") # Define the prediction function for emotion classification def classify_emotion(text): result = classifier(text) return result[0]['label'], result[0]['score'] # Define the Gradio interface iface = gr.Interface( fn=classify_emotion, # function that will classify emotion inputs=gr.Textbox(), # input text box outputs=[gr.Textbox(), gr.Textbox()], # output emotion label and score live=True # Enable live mode (optional) ) # Launch the Gradio interface as an API iface.launch(share=True)