EmreCaylar commited on
Commit
fbdc35c
·
1 Parent(s): f449ed9

req update

Browse files
Files changed (2) hide show
  1. app.py +13 -15
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,21 +1,19 @@
1
  import gradio as gr
2
- from transformers import pipeline
 
3
 
4
- # Load the BERT-Emotions-Classifier model
5
- classifier = pipeline("text-classification", model="ayoubkirouane/BERT-Emotions-Classifier")
6
 
7
- # Define the prediction function for emotion classification
8
  def classify_emotion(text):
9
- result = classifier(text)
10
- return result[0]['label'], result[0]['score']
11
 
12
- # Define the Gradio interface
13
- iface = gr.Interface(
14
- fn=classify_emotion, # function that will classify emotion
15
- inputs=gr.Textbox(), # input text box
16
- outputs=[gr.Textbox(), gr.Textbox()], # output emotion label and score
17
- live=True # Enable live mode (optional)
18
- )
19
 
20
- # Launch the Gradio interface as an API
21
- iface.launch(share=True)
 
 
 
 
1
  import gradio as gr
2
+ from fastapi import FastAPI
3
+ import uvicorn
4
 
5
+ # Create a FastAPI app
6
+ app = FastAPI()
7
 
8
+ # Create Gradio interface (just like in Hugging Face Spaces)
9
  def classify_emotion(text):
10
+ # Your model code here (replace this with the actual classification)
11
+ return "happy" # example return value
12
 
13
+ gradio_interface = gr.Interface(fn=classify_emotion, inputs="text", outputs="text")
 
 
 
 
 
 
14
 
15
+ # Mount the Gradio app inside FastAPI
16
+ app.mount("/gradio", gradio_interface)
17
+
18
+ if __name__ == "__main__":
19
+ uvicorn.run(app, host="0.0.0.0", port=7860)
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  transformers
2
  gradio
3
- torch
 
 
1
  transformers
2
  gradio
3
+ torch
4
+ uvicorn