Spaces:
Running
Running
File size: 6,673 Bytes
55dc5cf d55b1f0 55dc5cf 17ae9a6 55dc5cf 590959c 0bf2396 b873a6c 9730b7f 6ffae7e 54cdfff 5d71b1b 55dc5cf e93bf30 32337e2 e06afba ffde8a8 3487709 dd4fd1e 3487709 dd4fd1e 3487709 32337e2 3487709 becdcce 82a1f95 46da55e a7f537c 29838fe 8fe3b28 56f9638 82a1f95 29838fe ffde8a8 20684f1 ffde8a8 82a1f95 55dc5cf f46a010 55dc5cf f46a010 55dc5cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Подключение клиентов
# - - - - - - - - - - - - - -
from huggingface_hub import InferenceClient
from together import Together
# Подключение библиотек
# - - - - - - - - - - - - - -
import requests
import gradio as gr
import os
import json
#============================
#============================
# Список доступных моделей
# - - - - - - - - - - - - - -
models = {
"together": [
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
],
"huggingface": [
"google/gemma-3-27b-it",
"Qwen/QwQ-32B",
"Qwen/QwQ-32B-Preview",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"google/gemma-2-9b-it",
"google/gemma-2-27b-it",
"mistralai/Mistral-7B-Instruct-v0.3",
"HuggingFaceH4/zephyr-7b-beta",
"Qwen/Qwen2.5-72B-Instruct",
"mistralai/Mistral-Nemo-Instruct-2407",
"tiiuae/falcon-7b-instruct",
"google/gemma-3-4b-it",
"HuggingFaceH4/starchat2-15b-v0.1",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B"
]
}
#============================
#============================
# Функции для работы с сообщениями
# - - - - - - - - - - - - - -
def add_message(role, content, messages):
messages.append({"role": role, "content": content})
return messages, len(messages), str(messages)
def clear_messages(messages):
return [], 0, "[]"
def show_messages(messages):
return str(messages)
def get_messages_api(messages):
return json.dumps(messages, indent=4)
def run_huggingface_model(model, messages, max_tokens, temperature, top_p):
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
payload = {
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": False
# "inputs": json.dumps(messages),
# "seed": random.randint(1, 1000000000),
# "parameters": {
# "max_tokens": max_tokens,
# "temperature": temperature,
# "top_p": top_p
# }
}
model = "https://api-inference.huggingface.co/models/" + model + "/v1/chat/completions";
response = requests.post(model, headers=headers, json=payload, timeout=30)
print("RESPONSE: ")
print(response)
if response.status_code != 200:
response = json.loads(response.content)
print("ERROR: " + response["error"])
else:
print(response.content)
try:
response = json.loads(response.content)
result = response["choices"][0]["message"]["content"]
except:
result = response.content
return result
def run_huggingface_model_alt(model, messages, max_tokens, temperature, top_p):
client = InferenceClient(model)
response = client.chat_completion(
messages,
max_tokens=max_tokens,
stream=False,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message.content
def run_together_model(model, messages, max_tokens, temperature, top_p):
client = Together()
response = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message.content
#============================
#============================
# Создаем интерфейс с вкладками
demo = gr.Blocks()
with demo:
gr.Markdown("# Chat Interface")
# Вкладки для Together и HuggingFace
with gr.Tabs():
with gr.Tab("Together"):
together_model_input = gr.Radio(
label="Select a Together model",
choices=models["together"],
value=models["together"][0],
)
together_run_button = gr.Button("Run Together")
with gr.Tab("HuggingFace"):
huggingface_model_input = gr.Radio(
label="Select a HuggingFace model",
choices=models["huggingface"],
value=models["huggingface"][0],
)
huggingface_run_button = gr.Button("Run HuggingFace")
# Общие элементы интерфейса
role_input = gr.Dropdown(
label="Role",
choices=["system", "user", "assistant"], # Список ролей
value="user" # Значение по умолчанию
)
content_input = gr.Textbox(label="Content")
messages_state = gr.State(value=[])
messages_output = gr.Textbox(label="Messages", value="[]")
count_output = gr.Number(label="Count", value=0)
response_output = gr.Textbox(label="Response")
messages_api_output = gr.Textbox(label="Messages API")
add_button = gr.Button("Add")
clear_button = gr.Button("Clear")
show_button = gr.Button("Show messages")
get_api_button = gr.Button("Get messages API")
max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
# Обработчики событий для кнопок
add_button.click(
add_message,
inputs=[role_input, content_input, messages_state],
outputs=[messages_state, count_output, messages_output],
)
clear_button.click(
clear_messages,
inputs=[messages_state],
outputs=[messages_state, count_output, messages_output],
)
show_button.click(
show_messages,
inputs=[messages_state],
outputs=[messages_output],
)
get_api_button.click(
get_messages_api,
inputs=[messages_state],
outputs=[messages_api_output],
)
# Обработчики событий для кнопок "Run"
together_run_button.click(
run_together_model,
inputs=[together_model_input, messages_state, max_tokens_slider, temperature_slider, top_p_slider],
outputs=[response_output],
)
huggingface_run_button.click(
run_huggingface_model_alt,
inputs=[huggingface_model_input, messages_state, max_tokens_slider, temperature_slider, top_p_slider],
outputs=[response_output],
)
#============================
#============================
if __name__ == "__main__":
demo.launch() |