File size: 4,223 Bytes
e547b24
 
 
 
 
 
 
 
 
5398e17
 
dda8f4a
5f6b8de
 
5398e17
e547b24
 
 
 
5398e17
6f5a32e
e547b24
 
014e444
e547b24
9be63af
e547b24
 
 
 
 
 
 
5398e17
0fdb76e
 
e547b24
 
5398e17
e547b24
5398e17
6f5a32e
 
e547b24
 
 
 
 
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
 
02f8cfa
bc84ac0
02f8cfa
 
73f7edc
e547b24
 
02f8cfa
5398e17
02f8cfa
 
 
 
bc84ac0
02f8cfa
 
bc84ac0
4a22dd6
02f8cfa
 
 
 
5f6b8de
e547b24
02f8cfa
 
 
 
e547b24
0fdb76e
9d46351
d9389c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
import json

API_URLS = {
    "SDXL 1.0": "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0",
    "SD 3.5": "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large",
    "SD 3.5 Turbo": "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo",
    "Fluently XL Final": "https://api-inference.huggingface.co/models/fluently/Fluently-XL-Final"
}
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, model="SDXL 1.0"):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 99999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed!= -1 else random.randint(1, 1000000000),
        "strength": strength,
        "provider": "replicate"
    }

    API_URL = API_URLS[model]
    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code!= 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>Stable Diffusion</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        model = gr.Radio(label="Model", value="SD 3.5 Turbo", choices=["SDXL 1.0", "SD 3.5", "SD 3.5 Turbo", "Fluently XL Final"])

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, model], outputs=image_output)

app.launch(show_api=True, share=True)