Spaces:
Sleeping
Sleeping
app.py
Browse filesThis is the test, lets see if this would be perfect.
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
# Load the FastConformer model and processor
|
7 |
+
processor = AutoProcessor.from_pretrained("nvidia/stt_en_fastconformer_hybrid_large_pc")
|
8 |
+
model = AutoModelForCTC.from_pretrained("nvidia/stt_en_fastconformer_hybrid_large_pc")
|
9 |
+
|
10 |
+
# Function to transcribe audio
|
11 |
+
def transcribe_audio(audio_file):
|
12 |
+
audio_input, sample_rate = sf.read(audio_file)
|
13 |
+
inputs = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt")
|
14 |
+
with torch.no_grad():
|
15 |
+
logits = model(**inputs).logits
|
16 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
17 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
18 |
+
return transcription
|
19 |
+
|
20 |
+
# Create a Gradio interface
|
21 |
+
iface = gr.Interface(
|
22 |
+
fn=transcribe_audio,
|
23 |
+
inputs=gr.Audio(type="filepath"),
|
24 |
+
outputs="text",
|
25 |
+
title="Real-Time Transcription with FastConformer",
|
26 |
+
description="Upload an audio file to transcribe it using NVIDIA FastConformer."
|
27 |
+
)
|
28 |
+
|
29 |
+
# Launch the app
|
30 |
+
iface.launch()
|