Spaces:
Runtime error
Runtime error
File size: 16,482 Bytes
401e785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import torch
import random
import bisect
import json
import re
from config import *
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel, BitsAndBytesConfig
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
from tokenizers import Tokenizer
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_skip_modules=["patch_embedding"] # 跳过可能不兼容的模块
)
class Patchilizer:
def __init__(self, stream=PATCH_STREAM):
self.stream = stream
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
self.bos_token_id = 1
self.eos_token_id = 2
self.special_token_id = 0
def split_bars(self, body_lines):
"""
Split a body of music into individual bars.
"""
new_bars = []
try:
for line in body_lines:
line_bars = re.split(self.regexPattern, line)
line_bars = list(filter(None, line_bars))
new_line_bars = []
if len(line_bars) == 1:
new_line_bars = line_bars
else:
if line_bars[0] in self.delimiters:
new_line_bars = [line_bars[i] + line_bars[i + 1] for i in range(0, len(line_bars), 2)]
else:
new_line_bars = [line_bars[0]] + [line_bars[i] + line_bars[i + 1] for i in range(1, len(line_bars), 2)]
if 'V' not in new_line_bars[-1]:
new_line_bars[-2] += new_line_bars[-1] # 吸收最后一个 小节线+\n 的组合
new_line_bars = new_line_bars[:-1]
new_bars += new_line_bars
except:
pass
return new_bars
def split_patches(self, abc_text, patch_size=PATCH_SIZE, generate_last=False):
if not generate_last and len(abc_text) % patch_size != 0:
abc_text += chr(self.eos_token_id)
patches = [abc_text[i : i + patch_size] for i in range(0, len(abc_text), patch_size)]
return patches
def patch2chars(self, patch):
"""
Convert a patch into a bar.
"""
bytes = ''
for idx in patch:
if idx == self.eos_token_id:
break
if idx < self.eos_token_id:
pass
bytes += chr(idx)
return bytes
def patchilize_metadata(self, metadata_lines):
metadata_patches = []
for line in metadata_lines:
metadata_patches += self.split_patches(line)
return metadata_patches
def patchilize_tunebody(self, tunebody_lines, encode_mode='train'):
tunebody_patches = []
bars = self.split_bars(tunebody_lines)
if encode_mode == 'train':
for bar in bars:
tunebody_patches += self.split_patches(bar)
elif encode_mode == 'generate':
for bar in bars[:-1]:
tunebody_patches += self.split_patches(bar)
tunebody_patches += self.split_patches(bars[-1], generate_last=True)
return tunebody_patches
def encode(self, abc_text, patch_length=PATCH_LENGTH, patch_size=PATCH_SIZE, add_special_patches=True, cut=True):
lines = abc_text.split('\n')
lines = list(filter(None, lines))
lines = [line + '\n' for line in lines]
tunebody_index = -1
for i, line in enumerate(lines):
if line.startswith('[r:'):
tunebody_index = i
break
metadata_lines = lines[: tunebody_index]
tunebody_lines = lines[tunebody_index:]
metadata_patches = self.patchilize_metadata(metadata_lines)
tunebody_patches = self.patchilize_tunebody(tunebody_lines, encode_mode='train')
if add_special_patches:
bos_patch = chr(self.bos_token_id) * (patch_size - 1) + chr(self.eos_token_id)
eos_patch = chr(self.bos_token_id) + chr(self.eos_token_id) * (patch_size - 1)
metadata_patches = [bos_patch] + metadata_patches
tunebody_patches = tunebody_patches + [eos_patch]
if self.stream:
if len(metadata_patches) + len(tunebody_patches) > patch_length:
available_cut_indexes = [0] + [index + 1 for index, patch in enumerate(tunebody_patches) if
'\n' in patch]
line_index_for_cut_index = list(range(len(available_cut_indexes))) # 每个cut_index对应tunebody的哪一行
end_index = len(metadata_patches) + len(tunebody_patches) - patch_length
biggest_index = bisect.bisect_left(available_cut_indexes, end_index) # biggest index 在 end_index 右面一位
available_cut_indexes = available_cut_indexes[:biggest_index + 1]
if len(available_cut_indexes) == 1:
choices = ['head']
elif len(available_cut_indexes) == 2:
choices = ['head', 'tail']
else:
choices = ['head', 'tail', 'middle']
choice = random.choice(choices)
if choice == 'head':
patches = metadata_patches + tunebody_patches[0:]
else:
if choice == 'tail':
cut_index = len(available_cut_indexes) - 1
else:
cut_index = random.choice(range(1, len(available_cut_indexes) - 1))
line_index = line_index_for_cut_index[cut_index]
stream_tunebody_lines = tunebody_lines[line_index:]
stream_tunebody_patches = self.patchilize_tunebody(stream_tunebody_lines, encode_mode='train')
if add_special_patches:
stream_tunebody_patches = stream_tunebody_patches + [eos_patch]
patches = metadata_patches + stream_tunebody_patches
else:
patches = metadata_patches + tunebody_patches
else:
patches = metadata_patches + tunebody_patches
patches = patches[: patch_length]
# encode to ids
id_patches = []
for patch in patches:
id_patch = [ord(c) for c in patch] + [self.special_token_id] * (patch_size - len(patch))
id_patches.append(id_patch)
return id_patches
def encode_generate(self, abc_code, patch_length=PATCH_LENGTH, patch_size=PATCH_SIZE, add_special_patches=True):
lines = abc_code.split('\n')
lines = list(filter(None, lines))
tunebody_index = None
for i, line in enumerate(lines):
if line.startswith('[V:') or line.startswith('[r:'):
tunebody_index = i
break
metadata_lines = lines[ : tunebody_index]
tunebody_lines = lines[tunebody_index : ] # 备份未省略前的tunebody_lines
metadata_lines = [line + '\n' for line in metadata_lines]
if self.stream:
if not abc_code.endswith('\n'): # 如果生成结果最后一行未完结
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines) - 1)] + [tunebody_lines[-1]]
else:
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines))]
else:
tunebody_lines = [line + '\n' for line in tunebody_lines]
metadata_patches = self.patchilize_metadata(metadata_lines)
tunebody_patches = self.patchilize_tunebody(tunebody_lines, encode_mode='generate')
if add_special_patches:
bos_patch = chr(self.bos_token_id) * (patch_size - 1) + chr(self.eos_token_id)
metadata_patches = [bos_patch] + metadata_patches
patches = metadata_patches + tunebody_patches
patches = patches[ : patch_length]
# encode to ids
id_patches = []
for patch in patches:
if len(patch) < PATCH_SIZE and patch[-1] != chr(self.eos_token_id):
id_patch = [ord(c) for c in patch]
else:
id_patch = [ord(c) for c in patch] + [self.special_token_id] * (patch_size - len(patch))
id_patches.append(id_patch)
return id_patches
def decode(self, patches):
"""
Decode patches into music.
"""
return ''.join(self.patch2chars(patch) for patch in patches)
class PatchLevelDecoder(PreTrainedModel):
"""
A Patch-level Decoder model for generating patch features in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd).to(torch.float16)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.base = GPT2Model(config)
def forward(self,
patches: torch.Tensor,
masks=None) -> torch.Tensor:
"""
The forward pass of the patch-level decoder model.
:param patches: the patches to be encoded
:param masks: the masks for the patches
:return: the encoded patches
"""
patches = torch.nn.functional.one_hot(patches, num_classes=128).to(self.dtype)
patches = patches.reshape(len(patches), -1, PATCH_SIZE * (128))
patches = self.patch_embedding(patches.to(self.device))
if masks==None:
return self.base(inputs_embeds=patches)
else:
return self.base(inputs_embeds=patches,
attention_mask=masks)
class CharLevelDecoder(PreTrainedModel):
"""
A Char-level Decoder model for generating the chars within each patch in an auto-regressive manner
based on the encoded patch features. It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.special_token_id = 0
self.bos_token_id = 1
self.base = GPT2LMHeadModel(config)
def forward(self,
encoded_patches: torch.Tensor,
target_patches: torch.Tensor):
"""
The forward pass of the char-level decoder model.
:param encoded_patches: the encoded patches
:param target_patches: the target patches
:return: the output of the model
"""
target_patches = torch.cat((torch.ones_like(target_patches[:, 0:1]) * self.bos_token_id,
target_patches), dim=1) # [patch_len, patch_size + 1]
target_masks = target_patches == self.special_token_id # [patch_len, patch_size + 1]
labels = target_patches.clone().masked_fill_(target_masks, -100)
target_masks = torch.ones_like(labels)
target_masks = target_masks.masked_fill_(labels == -100, 0)
input_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)
input_embeds = torch.cat((encoded_patches.unsqueeze(1), input_embeds[:, 1:, :]), dim=1)
logits = self.base(inputs_embeds=input_embeds,
attention_mask=target_masks).logits # [patch_len, patch_size + 1, vocab_size]
logits = logits[:, :-1, :]
token_logps = torch.gather(logits.log_softmax(-1), dim=-1, index=target_patches[:, 1:].unsqueeze(-1)).squeeze(-1) # [patch_len, patch_size]
token_logps = token_logps[target_masks[:, 1:] == 1]
all_logps = token_logps.sum()
return all_logps
def generate(self,
encoded_patch: torch.Tensor, # [hidden_size]
tokens: torch.Tensor): # [1]
"""
The generate function for generating a patch based on the encoded patch and already generated tokens.
:param encoded_patch: the encoded patch
:param tokens: already generated tokens in the patch
:return: the probability distribution of next token
"""
encoded_patch = encoded_patch.reshape(1, 1, -1) # [1, 1, hidden_size]
tokens = tokens.reshape(1, -1)
# Get input embeddings
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
# Concatenate the encoded patch with the input embeddings
tokens = torch.cat((encoded_patch, tokens[:,1:,:]), dim=1)
# Get output from model
outputs = self.base(inputs_embeds=tokens)
# Get probabilities of next token
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
return probs
class NotaGenLMHeadModel(PreTrainedModel):
"""
NotaGen is a language model with a hierarchical structure.
It includes a patch-level decoder and a char-level decoder.
The patch-level decoder is used to generate patch features in an auto-regressive manner.
The char-level decoder is used to generate the chars within each patch in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, encoder_config, decoder_config):
super().__init__(encoder_config)
self.special_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.patch_level_decoder = PatchLevelDecoder(encoder_config)
self.char_level_decoder = CharLevelDecoder(decoder_config)
def forward(self,
patches: torch.Tensor,
masks: torch.Tensor):
"""
The forward pass of the bGPT model.
:param patches: the patches to be encoded
:param masks: the masks for the patches
:return: the decoded patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches, masks)["last_hidden_state"]
left_shift_masks = masks * (masks.flip(1).cumsum(1).flip(1) > 1)
masks[:, 0] = 0
encoded_patches = encoded_patches[left_shift_masks == 1]
patches = patches[masks == 1]
return self.char_level_decoder(encoded_patches, patches)
def generate(self,
patches: torch.Tensor,
top_k=0,
top_p=1,
temperature=1.0):
"""
The generate function for generating patches based on patches.
:param patches: the patches to be encoded
:param top_k: the top k for sampling
:param top_p: the top p for sampling
:param temperature: the temperature for sampling
:return: the generated patches
"""
if patches.shape[-1] % PATCH_SIZE != 0:
tokens = patches[:,:,-(patches.shape[-1]%PATCH_SIZE):].squeeze(0, 1)
tokens = torch.cat((torch.tensor([self.bos_token_id], device=self.device), tokens), dim=-1)
patches = patches[:,:,:-(patches.shape[-1]%PATCH_SIZE)]
else:
tokens = torch.tensor([self.bos_token_id], device=self.device)
patches = patches.reshape(len(patches), -1, PATCH_SIZE) # [bs, seq, patch_size]
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"] # [bs, seq, hidden_size]
generated_patch = []
while True:
prob = self.char_level_decoder.generate(encoded_patches[0][-1], tokens).cpu().detach().numpy() # [128]
prob = top_k_sampling(prob, top_k=top_k, return_probs=True) # [128]
prob = top_p_sampling(prob, top_p=top_p, return_probs=True) # [128]
token = temperature_sampling(prob, temperature=temperature) # int
char = chr(token)
generated_patch.append(token)
if len(tokens) >= PATCH_SIZE:# or token == self.eos_token_id:
break
else:
tokens = torch.cat((tokens, torch.tensor([token], device=self.device)), dim=0)
return generated_patch
|