log to huggingface
Browse files- climateqa/chat.py +5 -54
- climateqa/engine/talk_to_data/main.py +4 -1
- climateqa/handle_stream_events.py +1 -1
- climateqa/logging.py +194 -0
- front/tabs/chat_interface.py +1 -1
- front/tabs/tab_drias.py +6 -31
- front/utils.py +0 -11
- requirements.txt +1 -0
climateqa/chat.py
CHANGED
@@ -12,15 +12,11 @@ from .handle_stream_events import (
|
|
12 |
convert_to_docs_to_html,
|
13 |
stream_answer,
|
14 |
handle_retrieved_owid_graphs,
|
15 |
-
serialize_docs,
|
16 |
)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
file_client = share_client.get_file_client(file)
|
22 |
-
file_client.upload_file(logs)
|
23 |
-
|
24 |
# Chat functions
|
25 |
def start_chat(query, history, search_only):
|
26 |
history = history + [ChatMessage(role="user", content=query)]
|
@@ -32,28 +28,6 @@ def start_chat(query, history, search_only):
|
|
32 |
def finish_chat():
|
33 |
return gr.update(interactive=True, value="")
|
34 |
|
35 |
-
def log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id):
|
36 |
-
try:
|
37 |
-
# Log interaction to Azure if not in local environment
|
38 |
-
if os.getenv("GRADIO_ENV") != "local":
|
39 |
-
timestamp = str(datetime.now().timestamp())
|
40 |
-
prompt = history[1]["content"]
|
41 |
-
logs = {
|
42 |
-
"user_id": str(user_id),
|
43 |
-
"prompt": prompt,
|
44 |
-
"query": prompt,
|
45 |
-
"question": output_query,
|
46 |
-
"sources": sources,
|
47 |
-
"docs": serialize_docs(docs),
|
48 |
-
"answer": history[-1].content,
|
49 |
-
"time": timestamp,
|
50 |
-
}
|
51 |
-
log_on_azure(f"{timestamp}.json", logs, share_client)
|
52 |
-
except Exception as e:
|
53 |
-
print(f"Error logging on Azure Blob Storage: {e}")
|
54 |
-
error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
55 |
-
raise gr.Error(error_msg)
|
56 |
-
|
57 |
def handle_numerical_data(event):
|
58 |
if event["name"] == "retrieve_drias_data" and event["event"] == "on_chain_end":
|
59 |
numerical_data = event["data"]["output"]["drias_data"]
|
@@ -61,27 +35,6 @@ def handle_numerical_data(event):
|
|
61 |
return numerical_data, sql_query
|
62 |
return None, None
|
63 |
|
64 |
-
def log_drias_interaction_to_azure(query, sql_query, data, share_client, user_id):
|
65 |
-
try:
|
66 |
-
# Log interaction to Azure if not in local environment
|
67 |
-
if os.getenv("GRADIO_ENV") != "local":
|
68 |
-
timestamp = str(datetime.now().timestamp())
|
69 |
-
logs = {
|
70 |
-
"user_id": str(user_id),
|
71 |
-
"query": query,
|
72 |
-
"sql_query": sql_query,
|
73 |
-
# "data": data.to_dict() if data is not None else None,
|
74 |
-
"time": timestamp,
|
75 |
-
}
|
76 |
-
log_on_azure(f"drias_{timestamp}.json", logs, share_client)
|
77 |
-
print(f"Logged Drias interaction to Azure Blob Storage: {logs}")
|
78 |
-
else:
|
79 |
-
print("share_client or user_id is None, or GRADIO_ENV is local")
|
80 |
-
except Exception as e:
|
81 |
-
print(f"Error logging Drias interaction on Azure Blob Storage: {e}")
|
82 |
-
error_msg = f"Drias Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
83 |
-
raise gr.Error(error_msg)
|
84 |
-
|
85 |
# Main chat function
|
86 |
async def chat_stream(
|
87 |
agent : CompiledStateGraph,
|
@@ -235,9 +188,7 @@ async def chat_stream(
|
|
235 |
print(f"Event {event} has failed")
|
236 |
raise gr.Error(str(e))
|
237 |
|
238 |
-
|
239 |
-
|
240 |
# Call the function to log interaction
|
241 |
-
|
242 |
|
243 |
yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
|
|
|
12 |
convert_to_docs_to_html,
|
13 |
stream_answer,
|
14 |
handle_retrieved_owid_graphs,
|
|
|
15 |
)
|
16 |
+
from .logging import (
|
17 |
+
log_interaction_to_huggingface
|
18 |
+
)
|
19 |
+
|
|
|
|
|
|
|
20 |
# Chat functions
|
21 |
def start_chat(query, history, search_only):
|
22 |
history = history + [ChatMessage(role="user", content=query)]
|
|
|
28 |
def finish_chat():
|
29 |
return gr.update(interactive=True, value="")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def handle_numerical_data(event):
|
32 |
if event["name"] == "retrieve_drias_data" and event["event"] == "on_chain_end":
|
33 |
numerical_data = event["data"]["output"]["drias_data"]
|
|
|
35 |
return numerical_data, sql_query
|
36 |
return None, None
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Main chat function
|
39 |
async def chat_stream(
|
40 |
agent : CompiledStateGraph,
|
|
|
188 |
print(f"Event {event} has failed")
|
189 |
raise gr.Error(str(e))
|
190 |
|
|
|
|
|
191 |
# Call the function to log interaction
|
192 |
+
log_interaction_to_huggingface(history, output_query, sources, docs, share_client, user_id)
|
193 |
|
194 |
yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
|
climateqa/engine/talk_to_data/main.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from climateqa.engine.talk_to_data.workflow import drias_workflow
|
2 |
from climateqa.engine.llm import get_llm
|
|
|
3 |
import ast
|
4 |
|
5 |
llm = get_llm(provider="openai")
|
@@ -37,7 +38,7 @@ def ask_llm_column_names(sql_query: str, llm) -> list[str]:
|
|
37 |
columns_list = ast.literal_eval(columns.strip("```python\n").strip())
|
38 |
return columns_list
|
39 |
|
40 |
-
async def ask_drias(query: str, index_state: int = 0) -> tuple:
|
41 |
"""Main function to process a DRIAS query and return results.
|
42 |
|
43 |
This function orchestrates the DRIAS workflow, processing a user query to generate
|
@@ -85,6 +86,8 @@ async def ask_drias(query: str, index_state: int = 0) -> tuple:
|
|
85 |
sql_query = sql_queries[index_state]
|
86 |
dataframe = result_dataframes[index_state]
|
87 |
figure = figures[index_state](dataframe)
|
|
|
|
|
88 |
|
89 |
return sql_query, dataframe, figure, sql_queries, result_dataframes, figures, index_state, table_list, ""
|
90 |
|
|
|
1 |
from climateqa.engine.talk_to_data.workflow import drias_workflow
|
2 |
from climateqa.engine.llm import get_llm
|
3 |
+
from climateqa.logging import log_drias_interaction_to_huggingface
|
4 |
import ast
|
5 |
|
6 |
llm = get_llm(provider="openai")
|
|
|
38 |
columns_list = ast.literal_eval(columns.strip("```python\n").strip())
|
39 |
return columns_list
|
40 |
|
41 |
+
async def ask_drias(query: str, index_state: int = 0, user_id: str = None) -> tuple:
|
42 |
"""Main function to process a DRIAS query and return results.
|
43 |
|
44 |
This function orchestrates the DRIAS workflow, processing a user query to generate
|
|
|
86 |
sql_query = sql_queries[index_state]
|
87 |
dataframe = result_dataframes[index_state]
|
88 |
figure = figures[index_state](dataframe)
|
89 |
+
|
90 |
+
log_drias_interaction_to_huggingface(query, sql_query, user_id)
|
91 |
|
92 |
return sql_query, dataframe, figure, sql_queries, result_dataframes, figures, index_state, table_list, ""
|
93 |
|
climateqa/handle_stream_events.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from langchain_core.runnables.schema import StreamEvent
|
2 |
from gradio import ChatMessage
|
3 |
from climateqa.engine.chains.prompts import audience_prompts
|
4 |
-
from front.utils import make_html_source,parse_output_llm_with_sources
|
5 |
import numpy as np
|
6 |
|
7 |
def init_audience(audience :str) -> str:
|
|
|
1 |
from langchain_core.runnables.schema import StreamEvent
|
2 |
from gradio import ChatMessage
|
3 |
from climateqa.engine.chains.prompts import audience_prompts
|
4 |
+
from front.utils import make_html_source,parse_output_llm_with_sources
|
5 |
import numpy as np
|
6 |
|
7 |
def init_audience(audience :str) -> str:
|
climateqa/logging.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime
|
3 |
+
import json
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
import gradio as gr
|
6 |
+
import csv
|
7 |
+
|
8 |
+
def serialize_docs(docs:list)->list:
|
9 |
+
new_docs = []
|
10 |
+
for doc in docs:
|
11 |
+
new_doc = {}
|
12 |
+
new_doc["page_content"] = doc.page_content
|
13 |
+
new_doc["metadata"] = doc.metadata
|
14 |
+
new_docs.append(new_doc)
|
15 |
+
return new_docs
|
16 |
+
|
17 |
+
## AZURE LOGGING - DEPRECATED
|
18 |
+
|
19 |
+
# def log_on_azure(file, logs, share_client):
|
20 |
+
# """Log data to Azure Blob Storage.
|
21 |
+
|
22 |
+
# Args:
|
23 |
+
# file (str): Name of the file to store logs
|
24 |
+
# logs (dict): Log data to store
|
25 |
+
# share_client: Azure share client instance
|
26 |
+
# """
|
27 |
+
# logs = json.dumps(logs)
|
28 |
+
# file_client = share_client.get_file_client(file)
|
29 |
+
# file_client.upload_file(logs)
|
30 |
+
|
31 |
+
|
32 |
+
# def log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id):
|
33 |
+
# """Log chat interaction to Azure and Hugging Face.
|
34 |
+
|
35 |
+
# Args:
|
36 |
+
# history (list): Chat message history
|
37 |
+
# output_query (str): Processed query
|
38 |
+
# sources (list): Knowledge base sources used
|
39 |
+
# docs (list): Retrieved documents
|
40 |
+
# share_client: Azure share client instance
|
41 |
+
# user_id (str): User identifier
|
42 |
+
# """
|
43 |
+
# try:
|
44 |
+
# # Log interaction to Azure if not in local environment
|
45 |
+
# if os.getenv("GRADIO_ENV") != "local":
|
46 |
+
# timestamp = str(datetime.now().timestamp())
|
47 |
+
# prompt = history[1]["content"]
|
48 |
+
# logs = {
|
49 |
+
# "user_id": str(user_id),
|
50 |
+
# "prompt": prompt,
|
51 |
+
# "query": prompt,
|
52 |
+
# "question": output_query,
|
53 |
+
# "sources": sources,
|
54 |
+
# "docs": serialize_docs(docs),
|
55 |
+
# "answer": history[-1].content,
|
56 |
+
# "time": timestamp,
|
57 |
+
# }
|
58 |
+
# # Log to Azure
|
59 |
+
# log_on_azure(f"{timestamp}.json", logs, share_client)
|
60 |
+
# except Exception as e:
|
61 |
+
# print(f"Error logging on Azure Blob Storage: {e}")
|
62 |
+
# error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
63 |
+
# raise gr.Error(error_msg)
|
64 |
+
|
65 |
+
# def log_drias_interaction_to_azure(query, sql_query, data, share_client, user_id):
|
66 |
+
# """Log Drias data interaction to Azure and Hugging Face.
|
67 |
+
|
68 |
+
# Args:
|
69 |
+
# query (str): User query
|
70 |
+
# sql_query (str): SQL query used
|
71 |
+
# data: Retrieved data
|
72 |
+
# share_client: Azure share client instance
|
73 |
+
# user_id (str): User identifier
|
74 |
+
# """
|
75 |
+
# try:
|
76 |
+
# # Log interaction to Azure if not in local environment
|
77 |
+
# if os.getenv("GRADIO_ENV") != "local":
|
78 |
+
# timestamp = str(datetime.now().timestamp())
|
79 |
+
# logs = {
|
80 |
+
# "user_id": str(user_id),
|
81 |
+
# "query": query,
|
82 |
+
# "sql_query": sql_query,
|
83 |
+
# "time": timestamp,
|
84 |
+
# }
|
85 |
+
# log_on_azure(f"drias_{timestamp}.json", logs, share_client)
|
86 |
+
# print(f"Logged Drias interaction to Azure Blob Storage: {logs}")
|
87 |
+
# else:
|
88 |
+
# print("share_client or user_id is None, or GRADIO_ENV is local")
|
89 |
+
# except Exception as e:
|
90 |
+
# print(f"Error logging Drias interaction on Azure Blob Storage: {e}")
|
91 |
+
# error_msg = f"Drias Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
92 |
+
# raise gr.Error(error_msg)
|
93 |
+
|
94 |
+
## HUGGING FACE LOGGING
|
95 |
+
|
96 |
+
def log_on_huggingface(log_filename, logs):
|
97 |
+
"""Log data to Hugging Face dataset repository.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
log_filename (str): Name of the file to store logs
|
101 |
+
logs (dict): Log data to store
|
102 |
+
"""
|
103 |
+
try:
|
104 |
+
# Get Hugging Face token from environment
|
105 |
+
hf_token = os.getenv("HF_LOGS_TOKEN")
|
106 |
+
if not hf_token:
|
107 |
+
print("HF_LOGS_TOKEN not found in environment variables")
|
108 |
+
return
|
109 |
+
|
110 |
+
# Get repository name from environment or use default
|
111 |
+
repo_id = os.getenv("HF_DATASET_REPO", "timeki/climateqa_logs")
|
112 |
+
|
113 |
+
# Initialize HfApi
|
114 |
+
api = HfApi(token=hf_token)
|
115 |
+
|
116 |
+
# Add timestamp to the log data
|
117 |
+
logs["timestamp"] = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
118 |
+
|
119 |
+
# Convert logs to JSON string
|
120 |
+
logs_json = json.dumps(logs)
|
121 |
+
|
122 |
+
# Upload directly from memory
|
123 |
+
api.upload_file(
|
124 |
+
path_or_fileobj=logs_json.encode('utf-8'),
|
125 |
+
path_in_repo=log_filename,
|
126 |
+
repo_id=repo_id,
|
127 |
+
repo_type="dataset"
|
128 |
+
)
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error logging to Hugging Face: {e}")
|
132 |
+
|
133 |
+
|
134 |
+
def log_interaction_to_huggingface(history, output_query, sources, docs, share_client, user_id):
|
135 |
+
"""Log chat interaction to Hugging Face.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
history (list): Chat message history
|
139 |
+
output_query (str): Processed query
|
140 |
+
sources (list): Knowledge base sources used
|
141 |
+
docs (list): Retrieved documents
|
142 |
+
share_client: Azure share client instance (unused in this function)
|
143 |
+
user_id (str): User identifier
|
144 |
+
"""
|
145 |
+
try:
|
146 |
+
# Log interaction if not in local environment
|
147 |
+
if os.getenv("GRADIO_ENV") != "local":
|
148 |
+
timestamp = str(datetime.now().timestamp())
|
149 |
+
prompt = history[1]["content"]
|
150 |
+
logs = {
|
151 |
+
"user_id": str(user_id),
|
152 |
+
"prompt": prompt,
|
153 |
+
"query": prompt,
|
154 |
+
"question": output_query,
|
155 |
+
"sources": sources,
|
156 |
+
"docs": serialize_docs(docs),
|
157 |
+
"answer": history[-1].content,
|
158 |
+
"time": timestamp,
|
159 |
+
}
|
160 |
+
# Log to Hugging Face
|
161 |
+
log_on_huggingface(f"chat/{timestamp}.json", logs)
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error logging to Hugging Face: {e}")
|
164 |
+
error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
165 |
+
raise gr.Error(error_msg)
|
166 |
+
|
167 |
+
def log_drias_interaction_to_huggingface(query, sql_query, user_id):
|
168 |
+
"""Log Drias data interaction to Hugging Face.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
query (str): User query
|
172 |
+
sql_query (str): SQL query used
|
173 |
+
data: Retrieved data
|
174 |
+
user_id (str): User identifier
|
175 |
+
"""
|
176 |
+
try:
|
177 |
+
if os.getenv("GRADIO_ENV") != "local":
|
178 |
+
timestamp = str(datetime.now().timestamp())
|
179 |
+
logs = {
|
180 |
+
"user_id": str(user_id),
|
181 |
+
"query": query,
|
182 |
+
"sql_query": sql_query,
|
183 |
+
"time": timestamp,
|
184 |
+
}
|
185 |
+
log_on_huggingface(f"drias/drias_{timestamp}.json", logs)
|
186 |
+
print(f"Logged Drias interaction to Hugging Face: {logs}")
|
187 |
+
else:
|
188 |
+
print("share_client or user_id is None, or GRADIO_ENV is local")
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Error logging Drias interaction to Hugging Face: {e}")
|
191 |
+
error_msg = f"Drias Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
192 |
+
raise gr.Error(error_msg)
|
193 |
+
|
194 |
+
|
front/tabs/chat_interface.py
CHANGED
@@ -39,7 +39,7 @@ What do you want to learn ?
|
|
39 |
# """
|
40 |
|
41 |
init_prompt_poc = """
|
42 |
-
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports, the Paris Climate Action Plan (PCAET), the Biodiversity Plan 2018-2024, and the Acclimaterra reports from the Nouvelle-Aquitaine Region**.
|
43 |
|
44 |
❓ How to use
|
45 |
- **Language**: You can ask me your questions in any language.
|
|
|
39 |
# """
|
40 |
|
41 |
init_prompt_poc = """
|
42 |
+
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports, the Paris Climate Action Plan (PCAET), the Paris Biodiversity Plan 2018-2024, and the Acclimaterra reports from the Nouvelle-Aquitaine Region**.
|
43 |
|
44 |
❓ How to use
|
45 |
- **Language**: You can ask me your questions in any language.
|
front/tabs/tab_drias.py
CHANGED
@@ -5,8 +5,6 @@ import pandas as pd
|
|
5 |
|
6 |
from climateqa.engine.talk_to_data.main import ask_drias
|
7 |
from climateqa.engine.talk_to_data.config import DRIAS_MODELS, DRIAS_UI_TEXT
|
8 |
-
from climateqa.chat import log_drias_interaction_to_azure
|
9 |
-
|
10 |
|
11 |
class DriasUIElements(TypedDict):
|
12 |
tab: gr.Tab
|
@@ -28,8 +26,8 @@ class DriasUIElements(TypedDict):
|
|
28 |
next_button: gr.Button
|
29 |
|
30 |
|
31 |
-
async def ask_drias_query(query: str, index_state: int):
|
32 |
-
result = await ask_drias(query, index_state)
|
33 |
return result
|
34 |
|
35 |
|
@@ -196,19 +194,7 @@ def create_drias_ui() -> DriasUIElements:
|
|
196 |
next_button=next_button
|
197 |
)
|
198 |
|
199 |
-
|
200 |
-
"""Log Drias interaction to Azure storage."""
|
201 |
-
print("log_drias_to_azure")
|
202 |
-
if share_client is not None and user_id is not None:
|
203 |
-
log_drias_interaction_to_azure(
|
204 |
-
query=query,
|
205 |
-
sql_query=sql_query,
|
206 |
-
data=data,
|
207 |
-
share_client=share_client,
|
208 |
-
user_id=user_id
|
209 |
-
)
|
210 |
-
else:
|
211 |
-
print("share_client or user_id is None")
|
212 |
|
213 |
def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=None) -> None:
|
214 |
"""Set up all event handlers for the DRIAS tab."""
|
@@ -218,10 +204,7 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
218 |
plots_state = gr.State([])
|
219 |
index_state = gr.State(0)
|
220 |
table_names_list = gr.State([])
|
221 |
-
|
222 |
-
def log_drias_interaction(query: str, sql_query: str, data: pd.DataFrame):
|
223 |
-
log_drias_to_azure(query, sql_query, data, share_client, user_id)
|
224 |
-
|
225 |
|
226 |
# Handle example selection
|
227 |
ui_elements["examples_hidden"].change(
|
@@ -230,7 +213,7 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
230 |
outputs=[ui_elements["details_accordion"], ui_elements["drias_direct_question"]]
|
231 |
).then(
|
232 |
ask_drias_query,
|
233 |
-
inputs=[ui_elements["examples_hidden"], index_state],
|
234 |
outputs=[
|
235 |
ui_elements["drias_sql_query"],
|
236 |
ui_elements["drias_table"],
|
@@ -242,10 +225,6 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
242 |
table_names_list,
|
243 |
ui_elements["result_text"],
|
244 |
],
|
245 |
-
).then(
|
246 |
-
log_drias_interaction,
|
247 |
-
inputs=[ui_elements["examples_hidden"], ui_elements["drias_sql_query"], ui_elements["drias_table"]],
|
248 |
-
outputs=[],
|
249 |
).then(
|
250 |
show_results,
|
251 |
inputs=[sql_queries_state, dataframes_state, plots_state],
|
@@ -276,7 +255,7 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
276 |
outputs=[ui_elements["details_accordion"]]
|
277 |
).then(
|
278 |
ask_drias_query,
|
279 |
-
inputs=[ui_elements["drias_direct_question"], index_state],
|
280 |
outputs=[
|
281 |
ui_elements["drias_sql_query"],
|
282 |
ui_elements["drias_table"],
|
@@ -288,10 +267,6 @@ def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=
|
|
288 |
table_names_list,
|
289 |
ui_elements["result_text"],
|
290 |
],
|
291 |
-
).then(
|
292 |
-
log_drias_interaction,
|
293 |
-
inputs=[ui_elements["drias_direct_question"], ui_elements["drias_sql_query"], ui_elements["drias_table"]],
|
294 |
-
outputs=[],
|
295 |
).then(
|
296 |
show_results,
|
297 |
inputs=[sql_queries_state, dataframes_state, plots_state],
|
|
|
5 |
|
6 |
from climateqa.engine.talk_to_data.main import ask_drias
|
7 |
from climateqa.engine.talk_to_data.config import DRIAS_MODELS, DRIAS_UI_TEXT
|
|
|
|
|
8 |
|
9 |
class DriasUIElements(TypedDict):
|
10 |
tab: gr.Tab
|
|
|
26 |
next_button: gr.Button
|
27 |
|
28 |
|
29 |
+
async def ask_drias_query(query: str, index_state: int, user_id: str):
|
30 |
+
result = await ask_drias(query, index_state, user_id)
|
31 |
return result
|
32 |
|
33 |
|
|
|
194 |
next_button=next_button
|
195 |
)
|
196 |
|
197 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
def setup_drias_events(ui_elements: DriasUIElements, share_client=None, user_id=None) -> None:
|
200 |
"""Set up all event handlers for the DRIAS tab."""
|
|
|
204 |
plots_state = gr.State([])
|
205 |
index_state = gr.State(0)
|
206 |
table_names_list = gr.State([])
|
207 |
+
user_id = gr.State(user_id)
|
|
|
|
|
|
|
208 |
|
209 |
# Handle example selection
|
210 |
ui_elements["examples_hidden"].change(
|
|
|
213 |
outputs=[ui_elements["details_accordion"], ui_elements["drias_direct_question"]]
|
214 |
).then(
|
215 |
ask_drias_query,
|
216 |
+
inputs=[ui_elements["examples_hidden"], index_state, user_id],
|
217 |
outputs=[
|
218 |
ui_elements["drias_sql_query"],
|
219 |
ui_elements["drias_table"],
|
|
|
225 |
table_names_list,
|
226 |
ui_elements["result_text"],
|
227 |
],
|
|
|
|
|
|
|
|
|
228 |
).then(
|
229 |
show_results,
|
230 |
inputs=[sql_queries_state, dataframes_state, plots_state],
|
|
|
255 |
outputs=[ui_elements["details_accordion"]]
|
256 |
).then(
|
257 |
ask_drias_query,
|
258 |
+
inputs=[ui_elements["drias_direct_question"], index_state, user_id],
|
259 |
outputs=[
|
260 |
ui_elements["drias_sql_query"],
|
261 |
ui_elements["drias_table"],
|
|
|
267 |
table_names_list,
|
268 |
ui_elements["result_text"],
|
269 |
],
|
|
|
|
|
|
|
|
|
270 |
).then(
|
271 |
show_results,
|
272 |
inputs=[sql_queries_state, dataframes_state, plots_state],
|
front/utils.py
CHANGED
@@ -13,17 +13,6 @@ def make_pairs(lst:list)->list:
|
|
13 |
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
|
14 |
|
15 |
|
16 |
-
def serialize_docs(docs:list)->list:
|
17 |
-
new_docs = []
|
18 |
-
for doc in docs:
|
19 |
-
new_doc = {}
|
20 |
-
new_doc["page_content"] = doc.page_content
|
21 |
-
new_doc["metadata"] = doc.metadata
|
22 |
-
new_docs.append(new_doc)
|
23 |
-
return new_docs
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
def parse_output_llm_with_sources(output:str)->str:
|
28 |
# Split the content into a list of text and "[Doc X]" references
|
29 |
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
|
|
|
13 |
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def parse_output_llm_with_sources(output:str)->str:
|
17 |
# Split the content into a list of text and "[Doc X]" references
|
18 |
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
|
requirements.txt
CHANGED
@@ -8,6 +8,7 @@ langgraph==0.2.70
|
|
8 |
pinecone-client==4.1.0
|
9 |
sentence-transformers==2.6.0
|
10 |
huggingface-hub==0.25.2
|
|
|
11 |
pyalex==0.13
|
12 |
networkx==3.2.1
|
13 |
pyvis==0.3.2
|
|
|
8 |
pinecone-client==4.1.0
|
9 |
sentence-transformers==2.6.0
|
10 |
huggingface-hub==0.25.2
|
11 |
+
datasets==3.5.0
|
12 |
pyalex==0.13
|
13 |
networkx==3.2.1
|
14 |
pyvis==0.3.2
|