File size: 9,154 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import math
import sys
import time

import skimage.morphology
import skimage.io
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import shapely.geometry
import shapely.affinity
from lydorn_utils import print_utils
from scipy.ndimage.morphology import distance_transform_edt
import cv2 as cv

from functools import partial

import torch_lydorn.torchvision


class Rasterize(object):
    """Rasterize polygons"""

    def __init__(self, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False, return_distances=False,
                 return_sizes=False):
        self.fill = fill
        self.edges = edges
        self.vertices = vertices
        self.line_width = line_width
        self.antialiasing = antialiasing

        if not return_distances and not return_sizes:
            self.raster_func = partial(draw_polygons, fill=self.fill, edges=self.edges, vertices=self.vertices,
                                       line_width=self.line_width, antialiasing=self.antialiasing)
        elif return_distances and return_sizes:
            self.raster_func = partial(compute_raster_distances_sizes, fill=self.fill, edges=self.edges, vertices=self.vertices,
                                       line_width=self.line_width, antialiasing=self.antialiasing)
        else:
            raise NotImplementedError

    def __call__(self, image, polygons):
        """
        If distances is True, also returns distances image
        (sum of distance to closest and second-closest annotation for each pixel).
        Same for sizes (size of annotation the pixel belongs to).

        """
        size = (image.shape[0], image.shape[1])
        out = self.raster_func(polygons, size)
        return out


def compute_raster_distances_sizes(polygons, shape, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False):
    """
    Returns:
         - distances: sum of distance to closest and second-closest annotation for each pixel.
         - size_weights: relative size (normalized by image area) of annotation the pixel belongs to.
    """
    assert type(polygons) == list, "polygons should be a list"

    # Filter out zero-area polygons
    polygons = [polygon for polygon in polygons if 0 < polygon.area]

    # tic = time.time()

    channel_count = fill + edges + vertices
    polygons_raster = np.zeros((*shape, channel_count), dtype=np.uint8)
    distance_maps = np.ones((*shape, len(polygons)))  # Init with max value (distances are normed)
    sizes = np.ones(shape)  # Init with max value (sizes are normed)
    image_area = shape[0] * shape[1]
    for i, polygon in enumerate(polygons):
        minx, miny, maxx, maxy = polygon.bounds
        mini = max(0, math.floor(miny) - 2*line_width)
        minj = max(0, math.floor(minx) - 2*line_width)
        maxi = min(polygons_raster.shape[0], math.ceil(maxy) + 2*line_width)
        maxj = min(polygons_raster.shape[1], math.ceil(maxx) + 2*line_width)
        bbox_shape = (maxi - mini, maxj - minj)
        bbox_polygon = shapely.affinity.translate(polygon, xoff=-minj, yoff=-mini)
        bbox_raster = draw_polygons([bbox_polygon], bbox_shape, fill, edges, vertices, line_width, antialiasing)
        polygons_raster[mini:maxi, minj:maxj] = np.maximum(polygons_raster[mini:maxi, minj:maxj], bbox_raster)
        bbox_mask = 0 < np.sum(bbox_raster, axis=2)  # Polygon interior + edge + vertex
        if bbox_mask.max():  # Make sure mask is not empty
            polygon_mask = np.zeros(shape, dtype=np.bool)
            polygon_mask[mini:maxi, minj:maxj] = bbox_mask
            polygon_dist = cv.distanceTransform(1 - polygon_mask.astype(np.uint8), distanceType=cv.DIST_L2, maskSize=cv.DIST_MASK_5,
                                        dstType=cv.CV_64F)
            polygon_dist /= (polygon_mask.shape[0] + polygon_mask.shape[1])  # Normalize dist
            distance_maps[:, :, i] = polygon_dist

            selem = skimage.morphology.disk(line_width)
            bbox_dilated_mask = skimage.morphology.binary_dilation(bbox_mask, selem=selem)
            sizes[mini:maxi, minj:maxj][bbox_dilated_mask] = polygon.area / image_area

    polygons_raster = np.clip(polygons_raster, 0, 255)
    # skimage.io.imsave("polygons_raster.png", polygons_raster)

    if edges:
        edge_channels = -1 + fill + edges
        # Remove border edges because they correspond to cut buildings:
        polygons_raster[:line_width, :, edge_channels] = 0
        polygons_raster[-line_width:, :, edge_channels] = 0
        polygons_raster[:, :line_width, edge_channels] = 0
        polygons_raster[:, -line_width:, edge_channels] = 0

    distances = compute_distances(distance_maps)
    # skimage.io.imsave("distances.png", distances)

    distances = distances.astype(np.float16)
    sizes = sizes.astype(np.float16)

    # toc = time.time()
    # print(f"Rasterize {len(polygons)} polygons: {toc - tic}s")

    return polygons_raster, distances, sizes


def compute_distances(distance_maps):
    distance_maps.sort(axis=2)
    distance_maps = distance_maps[:, :, :2]
    distances = np.sum(distance_maps, axis=2)
    return distances


def draw_polygons(polygons, shape, fill=True, edges=True, vertices=True, line_width=3, antialiasing=False):
    assert type(polygons) == list, "polygons should be a list"
    assert type(polygons[0]) == shapely.geometry.Polygon, "polygon should be a shapely.geometry.Polygon"

    if antialiasing:
        draw_shape = (2 * shape[0], 2 * shape[1])
        polygons = [shapely.affinity.scale(polygon, xfact=2.0, yfact=2.0, origin=(0, 0)) for polygon in polygons]
        line_width *= 2
    else:
        draw_shape = shape
    # Channels
    fill_channel_index = 0  # Always first channel
    edges_channel_index = fill  # If fill == True, take second channel. If not then take first
    vertices_channel_index = fill + edges  # Same principle as above
    channel_count = fill + edges + vertices
    im_draw_list = []
    for channel_index in range(channel_count):
        im = Image.new("L", (draw_shape[1], draw_shape[0]))
        im_px_access = im.load()
        draw = ImageDraw.Draw(im)
        im_draw_list.append((im, draw))

    for polygon in polygons:
        if fill:
            draw = im_draw_list[fill_channel_index][1]
            draw.polygon(polygon.exterior.coords, fill=255)
            for interior in polygon.interiors:
                draw.polygon(interior.coords, fill=0)
        if edges:
            draw = im_draw_list[edges_channel_index][1]
            draw.line(polygon.exterior.coords, fill=255, width=line_width)
            for interior in polygon.interiors:
                draw.line(interior.coords, fill=255, width=line_width)
        if vertices:
            draw = im_draw_list[vertices_channel_index][1]
            for vertex in polygon.exterior.coords:
                torch_lydorn.torchvision.transforms.functional.draw_circle(draw, vertex, line_width / 2, fill=255)
            for interior in polygon.interiors:
                for vertex in interior.coords:
                    torch_lydorn.torchvision.transforms.functional.draw_circle(draw, vertex, line_width / 2, fill=255)

    im_list = []
    if antialiasing:
        # resize images:
        for im_draw in im_draw_list:
            resize_shape = (shape[1], shape[0])
            im_list.append(im_draw[0].resize(resize_shape, Image.BILINEAR))
    else:
        for im_draw in im_draw_list:
            im_list.append(im_draw[0])

    # Convert image to numpy array with the right number of channels
    array_list = [np.array(im) for im in im_list]
    array = np.stack(array_list, axis=-1)
    return array


def _rasterize_coco(image, polygons):
    import pycocotools.mask as cocomask

    image_size = image.shape[:2]
    mask = np.zeros(image_size)
    for polygon in polygons:
        rle = cocomask.frPyObjects([np.array(polygon.exterior.coords).reshape(-1)], image_size[0], image_size[1])
        m = cocomask.decode(rle)

        for i in range(m.shape[-1]):
            mi = m[:, :, i]
            mi = mi.reshape(image_size)
            mask += mi
    return mask


def _test():
    import skimage.io

    rasterize = Rasterize(fill=True, edges=False, vertices=False, line_width=2, antialiasing=True, return_distances=True, return_sizes=True)

    image = np.zeros((300, 300))
    polygons = [
        shapely.geometry.Polygon([
            [10.5, 10.5],
            [100, 10],
            [100, 150],
            [10, 100],
            [10, 10],
        ]),
        shapely.geometry.Polygon([
            [10+150, 10],
            [100+150, 10],
            [100+150, 100],
            [10+150, 100],
            [10+150, 10],
        ]),
    ]
    polygons_raster, distances, size_weights = rasterize(image, polygons)

    skimage.io.imsave('rasterize.polygons_raster.png', polygons_raster)
    skimage.io.imsave('rasterize.distances.png', distances)
    skimage.io.imsave('rasterize.size_weights.png', size_weights)

    # Rasterize with pycocotools
    coco_mask = _rasterize_coco(image, polygons)
    skimage.io.imsave('rasterize.coco_mask.png', coco_mask)


if __name__ == "__main__":
    _test()