File size: 8,882 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numbers
import numpy as np
import torch
from torchvision.transforms.functional import _is_pil_image, _is_numpy_image

from torch_lydorn.torch.utils.complex import complex_mul, complex_abs_squared

try:
    import accimage
except ImportError:
    accimage = None


__all__ = ["to_tensor", "batch_normalize"]


def _is_numpy(img):
    return isinstance(img, np.ndarray)


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor without typecasting and rescaling

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic) or _is_numpy(pic)):
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

    if isinstance(pic, np.ndarray):
        # handle numpy array
        if pic.ndim == 2:
            pic = pic[:, :, None]

        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        return img

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
    # PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK
    if pic.mode == 'YCbCr':
        nchannel = 3
    elif pic.mode == 'I;16':
        nchannel = 1
    else:
        nchannel = len(pic.mode)
    img = img.view(pic.size[1], pic.size[0], nchannel)
    # put it from HWC to CHW format
    # yikes, this transpose takes 80% of the loading time/CPU
    img = img.transpose(0, 1).transpose(0, 2).contiguous()
    return img


def batch_normalize(tensor, mean, std, inplace=False):
    """Normalize a batched tensor image with batched mean and batched standard deviation.
    .. note::
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
    Args:
        tensor (Tensor): Tensor image of size (B, C, H, W) to be normalized.
        mean (sequence): Tensor means of size (B, C).
        std (sequence): Tensor standard deviations of size (B, C).
        inplace(bool,optional): Bool to make this operation inplace.
    Returns:
        Tensor: Normalized Tensor image.
    """
    assert len(tensor.shape) == 4, \
        "tensor should have 4 dims (B, H, W, C) , not {}".format(len(tensor.shape))
    assert len(mean.shape) == len(std.shape) == 2, \
        "mean and std should have 2 dims (B, C) , not {} and {}".format(len(mean.shape), len(std.shape))
    assert tensor.shape[1] == mean.shape[1] == std.shape[1], \
        "tensor, mean and std should have the same number of channels, not {}, {} and {}".format(tensor.shape[1], mean.shape[1], std.shape[1])

    if not inplace:
        tensor = tensor.clone()

    mean = mean.to(tensor.dtype)
    std = std.to(tensor.dtype)

    tensor.sub_(mean[..., None, None]).div_(std[..., None, None])
    return tensor


def batch_denormalize(tensor, mean, std, inplace=False):
    """Denormalize a batched tensor image with batched mean and batched standard deviation.
    .. note::
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
    Args:
        tensor (Tensor): Tensor image of size (B, C, H, W) to be normalized.
        mean (sequence): Tensor means of size (B, C).
        std (sequence): Tensor standard deviations of size (B, C).
        inplace(bool,optional): Bool to make this operation inplace.
    Returns:
        Tensor: Normalized Tensor image.
    """
    assert len(tensor.shape) == 4, \
        "tensor should have 4 dims (B, H, W, C) , not {}".format(len(tensor.shape))
    assert len(mean.shape) == len(std.shape) == 2, \
        "mean and std should have 2 dims (B, C) , not {} and {}".format(len(mean.shape), len(std.shape))
    assert tensor.shape[1] == mean.shape[1] == std.shape[1], \
        "tensor, mean and std should have the same number of channels, not {}, {} and {}".format( tensor.shape[-1], mean.shape[-1], std.shape[-1])

    if not inplace:
        tensor = tensor.clone()

    mean = mean.to(tensor.dtype)
    std = std.to(tensor.dtype)

    tensor.mul_(std[..., None, None]).add_(mean[..., None, None])
    return tensor


def crop(tensor, top, left, height, width):
    """Crop the given Tensor batch of images.
    Args:
        tensor (B, C, H, W): Tensor to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
    Returns:
        Tensor: Cropped image.
    """
    return tensor[..., top:top+height, left:left+width]


def center_crop(tensor, output_size):
    """Crop the given tensor batch of images and resize it to desired size.

        Args:
            tensor (B, C, H, W): Tensor to be cropped.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions
        Returns:
            Tensor: Cropped tensor.
        """
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    tensor_height, tensor_width = tensor.shape[-2:]
    crop_height, crop_width = output_size
    crop_top = int(round((tensor_height - crop_height) / 2.))
    crop_left = int(round((tensor_width - crop_width) / 2.))
    return crop(tensor, crop_top, crop_left, crop_height, crop_width)


def rotate_anglefield(angle_field, angle):
    """
    :param angle_field: (B, 1, H, W), in radians
    :param angle_deg: (B) in degrees
    :return:
    """
    assert len(angle_field.shape) == 4, "angle_field should have shape (B, 1, H, W)"
    assert len(angle.shape) == 1, "angle should have shape (B)"
    assert angle_field.shape[0] == angle.shape[0], "angle_field and angle should have the same batch size"
    angle_field += np.pi * angle[:, None, None, None] / 180
    return angle_field


def vflip_anglefield(angle_field):
    """

    :param angle_field: (B, 1, H, W), in radians
    :return:
    """
    assert len(angle_field.shape) == 4, "angle_field should have shape (B, 1, H, W)"
    angle_field = np.pi - angle_field  # Angle is expressed in ij coordinate (it's a horizontal flip in xy)
    return angle_field


def rotate_framefield(framefield, angle):
    """
    ONly rotates values of the framefield, does not rotate the spatial domain (use already-made torch functions to do that).

    @param framefield: shape (B, 4, H, W). The 4 channels represent the c_0 and c_2 complex coefficients.
    @param angle: in degrees
    @return:
    """
    assert framefield.shape[1] == 4, f"framefield should have shape (B, 4, H, W), not {framefield.shape}"
    rad = np.pi * angle / 180
    z_4angle = torch.tensor([np.cos(4*rad), np.sin(4*rad)], dtype=framefield.dtype, device=framefield.device)
    z_2angle = torch.tensor([np.cos(2*rad), np.sin(2*rad)], dtype=framefield.dtype, device=framefield.device)
    framefield[:, :2, :, :] = complex_mul(framefield[:, :2, :, :], z_4angle[None, :, None, None], complex_dim=1)
    framefield[:, 2:, :, :] = complex_mul(framefield[:, 2:, :, :], z_2angle[None, :, None, None], complex_dim=1)
    return framefield


def vflip_framefield(framefield):
    """
    Flips the framefield vertically. This means switching the signs of the real part of u and v
    (this is because the framefield is in ij coordinates: it's a horizontal flip in xy), which translates to
    switching the signs of the imaginary parts of c_0 and c_2.

    @param framefield: shape (B, 4, H, W). The 4 channels represent the c_0 and c_2 complex coefficients.
    @return:
    """
    assert framefield.shape[1] == 4, f"framefield should have shape (B, 4, H, W), not {framefield.shape}"
    framefield[:, 1, :, :] = - framefield[:, 1, :, :]
    framefield[:, 3, :, :] = - framefield[:, 3, :, :]
    return framefield


def draw_circle(draw, center, radius, fill):
    draw.ellipse([center[0] - radius,
                  center[1] - radius,
                  center[0] + radius,
                  center[1] + radius], fill=fill, outline=None)