File size: 17,157 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import skimage.io
from functools import partial
from multiprocess import Pool
import itertools

import numpy as np
import rasterio
import rasterio.rio.insp
import fiona
from pyproj import Proj, transform, CRS

import torch_lydorn.torch.utils.data

import os

from tqdm import tqdm

import torch

from frame_field_learning import data_transforms

from lydorn_utils import run_utils
from lydorn_utils import print_utils
from lydorn_utils import python_utils
from lydorn_utils import polygon_utils
from lydorn_utils import ogr2ogr
from lydorn_utils import image_utils


class LuxcartaBuildings(torch_lydorn.torch.utils.data.Dataset):
    def __init__(self, root, transform=None, pre_transform=None, fold="train", patch_size=None, patch_stride=None,
                 pool_size=1):
        assert fold in {"train", "test"}, "fold should be either train of test"
        self.fold = fold
        self.patch_size = patch_size
        self.patch_stride = patch_stride
        self.pool_size = pool_size
        self._processed_filepaths = None
        # TODO: implement pool_size option
        super(LuxcartaBuildings, self).__init__(root, transform, pre_transform)

    @property
    def raw_dir(self):
        return os.path.join(self.root, 'raw', self.fold)

    @property
    def processed_dir(self):
        return os.path.join(self.root, 'processed', self.fold)

    @property
    def raw_file_names(self):
        return []

    @property
    def raw_sample_metadata_list(self):
        returned_list = []
        for dirname in os.listdir(self.raw_dir):
            dirpath = os.path.join(self.raw_dir, dirname)
            if os.path.isdir(dirpath):
                image_filepath_list = python_utils.get_filepaths(dirpath, endswith_str="_crop.tif",
                                                                 startswith_str="Ortho",
                                                                 not_endswith_str=".tif_crop.tif")
                gt_polygons_filepath_list = python_utils.get_filepaths(dirpath, endswith_str=".shp",
                                                                       startswith_str="Building")
                mask_filepath_list = python_utils.get_filepaths(dirpath, endswith_str=".kml", startswith_str="zone")
                if len(image_filepath_list) and len(gt_polygons_filepath_list):
                    metadata = {
                        "dirname": dirname,
                        "image_filepath": image_filepath_list[0],
                        "gt_polygons_filepath": gt_polygons_filepath_list[0],
                    }
                    if len(mask_filepath_list):
                        metadata["mask_filepath"] = mask_filepath_list[0]
                    returned_list.append(metadata)
        return returned_list

    @property
    def processed_filepaths(self):
        if self._processed_filepaths is None:
            self._processed_filepaths = []
            for dirname in os.listdir(self.processed_dir):
                dirpath = os.path.join(self.processed_dir, dirname)
                if os.path.isdir(dirpath):
                    filepath_list = python_utils.get_filepaths(dirpath, endswith_str=".pt", startswith_str="data.")
                    self._processed_filepaths.extend(filepath_list)
        return self._processed_filepaths

    def __len__(self):
        return len(self.processed_filepaths)

    def _download(self):
        pass

    def download(self):
        pass

    def _get_mask_multi_polygon(self, mask_filepath, shp_srs):
        # Read mask and convert to shapefile's crs:
        mask_shp_filepath = os.path.join(os.path.dirname(mask_filepath), "mask.shp")

        # TODO: see what's up with the warnings:
        ogr2ogr.main(["", "-f", "ESRI Shapefile", mask_shp_filepath,
                      mask_filepath])  # Convert .kml into .shp
        mask = fiona.open(mask_shp_filepath, "r")
        mask_srs = Proj(mask.crs["init"])

        mask_multi_polygon = []
        for feat in mask:
            mask_polygon = []
            for point in feat['geometry']['coordinates'][0]:
                long, lat = point[:2]  # one 2D point of the LinearRing
                x, y = transform(mask_srs, shp_srs, long, lat, always_xy=True)  # transform the point
                mask_polygon.append((x, y))
            mask_multi_polygon.append(mask_polygon)
            # mask_polygon is now in UTM proj, ready to compare to shapefile proj

        mask.close()

        return mask_multi_polygon

    def _read_annotations(self, annotations_filepath, raster, mask_filepath=None):
        shapefile = fiona.open(annotations_filepath, "r")
        shp_srs = Proj(shapefile.crs["init"])
        raster_srs = Proj(raster.crs)

        # --- Read and crop shapefile with mask if specified --- #
        if mask_filepath is not None:
            mask_multi_polygon = self._get_mask_multi_polygon(mask_filepath, shp_srs)
        else:
            mask_multi_polygon = None

        process_feat_partial = partial(process_feat, shp_srs=shp_srs, raster_srs=raster_srs,
                                       raster_transform=raster.transform, mask_multi_polygon=mask_multi_polygon)
        with Pool() as pool:
            out_polygons = list(
                tqdm(pool.imap(process_feat_partial, shapefile), desc="Process shp feature", total=len(shapefile),
                     leave=True))
        out_polygons = list(itertools.chain.from_iterable(out_polygons))

        shapefile.close()

        return out_polygons

    def process(self, metadata_list):
        progress_bar = tqdm(metadata_list, desc="Pre-process")
        for metadata in progress_bar:
            progress_bar.set_postfix(image=metadata["dirname"], status="Loading image")
            # Load image
            # image = skimage.io.imread(metadata["image_filepath"])
            raster = rasterio.open(metadata["image_filepath"])
            # print(raster)
            # print(dir(raster))
            # print(raster.meta)
            # exit()

            progress_bar.set_postfix(image=metadata["dirname"], status="Process shapefile")
            mask_filepath = metadata["mask_filepath"] if "mask_filepath" in metadata else None
            gt_polygons = self._read_annotations(metadata["gt_polygons_filepath"], raster, mask_filepath=mask_filepath)

            # Compute image mean and std
            b1, b2, b3 = raster.read()
            image = np.stack([b1, b2, b3], axis=-1)
            progress_bar.set_postfix(image=metadata["dirname"], status="Compute mean and std")
            image_float = image / 255
            mean = np.mean(image_float.reshape(-1, image_float.shape[-1]), axis=0)
            std = np.std(image_float.reshape(-1, image_float.shape[-1]), axis=0)

            if self.patch_size is not None:
                # Patch the tile
                progress_bar.set_postfix(image=metadata["dirname"], status="Patching")
                patch_stride = self.patch_stride if self.patch_stride is not None else self.patch_size
                patch_boundingboxes = image_utils.compute_patch_boundingboxes(image.shape[0:2],
                                                                              stride=patch_stride,
                                                                              patch_res=self.patch_size)
                for i, patch_boundingbox in enumerate(tqdm(patch_boundingboxes, desc="Process patches", leave=False)):
                    patch_gt_polygons = polygon_utils.crop_polygons_to_patch_if_touch(gt_polygons, patch_boundingbox)
                    if len(patch_gt_polygons) == 0:
                        # Do not save patches empty of polygons # TODO: keep empty patches?
                        break
                    patch_image = image[patch_boundingbox[0]:patch_boundingbox[2],
                                  patch_boundingbox[1]:patch_boundingbox[3], :]
                    sample = {
                        "dirname": metadata["dirname"],
                        "image": patch_image,
                        "image_mean": mean,
                        "image_std": std,
                        "gt_polygons": patch_gt_polygons,
                        "image_filepath": metadata["image_filepath"],
                    }

                    if self.pre_transform:
                        sample = self.pre_transform(sample)

                    filepath = os.path.join(self.processed_dir, sample["dirname"], "data.{:06d}.pt".format(i))
                    os.makedirs(os.path.dirname(filepath), exist_ok=True)
                    torch.save(sample, filepath)
            else:
                # Tile is saved as is
                sample = {
                    "dirname": metadata["dirname"],
                    "image": image,
                    "image_mean": mean,
                    "image_std": std,
                    "gt_polygons": gt_polygons,
                    "image_filepath": metadata["image_filepath"],
                }

                if self.pre_transform:
                    sample = self.pre_transform(sample)

                filepath = os.path.join(self.processed_dir, sample["dirname"], "data.{:06d}.pt".format(0))
                os.makedirs(os.path.dirname(filepath), exist_ok=True)
                torch.save(sample, filepath)

            flag_filepath = os.path.join(self.processed_dir, metadata["dirname"], "flag.json")
            flag = python_utils.load_json(flag_filepath)
            flag["done"] = True
            python_utils.save_json(flag_filepath, flag)

            raster.close()

    def _process(self):
        to_process_metadata_list = []
        for metadata in self.raw_sample_metadata_list:
            flag_filepath = os.path.join(self.processed_dir, metadata["dirname"], "flag.json")
            if os.path.exists(flag_filepath):
                flag = python_utils.load_json(flag_filepath)
                if not flag["done"]:
                    to_process_metadata_list.append(metadata)
            else:
                flag = {
                    "done": False
                }
                python_utils.save_json(flag_filepath, flag)
                to_process_metadata_list.append(metadata)

        if len(to_process_metadata_list) == 0:
            return

        print('Processing...')

        torch_lydorn.torch.utils.data.makedirs(self.processed_dir)
        self.process(to_process_metadata_list)

        path = os.path.join(self.processed_dir, 'pre_transform.pt')
        torch.save(torch_lydorn.torch.utils.data.__repr__(self.pre_transform), path)
        path = os.path.join(self.processed_dir, 'pre_filter.pt')
        torch.save(torch_lydorn.torch.utils.data.__repr__(self.pre_filter), path)

        print('Done!')

    def get(self, idx):
        filepath = self.processed_filepaths[idx]
        data = torch.load(filepath)
        data["patch_bbox"] = torch.tensor([0, 0, 0, 0])  # TODO: implement in pre-processing
        tile_name = os.path.basename(os.path.dirname(filepath))
        patch_name = os.path.basename(filepath)
        patch_name = patch_name[len("data."):-len(".pt")]
        data["name"] = tile_name + "." + patch_name
        return data


def process_feat(feat, shp_srs, raster_srs, raster_transform, mask_multi_polygon=None):
    out_polygons = []

    if feat['geometry']["type"] == "Polygon":
        poly = feat['geometry']['coordinates']
        polygons = process_polygon_feat(poly, shp_srs, raster_srs, raster_transform, mask_multi_polygon)
        out_polygons.extend(polygons)

    elif feat['geometry']["type"] == "MultiPolygon":
        for poly in feat['geometry']["coordinates"]:
            polygons = process_polygon_feat(poly, shp_srs, raster_srs, raster_transform, mask_multi_polygon)
            out_polygons.extend(polygons)

    return out_polygons


def process_polygon_feat(in_polygon, shp_srs, raster_srs, raster_transform, mask_multi_polygon=None):
    out_polygons = []
    points = in_polygon[0]  # TODO: handle holes
    # Intersect with mask_polygon if specified
    if mask_multi_polygon is not None:
        multi_polygon_simple = polygon_utils.intersect_polygons(points, mask_multi_polygon)
        if multi_polygon_simple is None:
            return out_polygons
    else:
        multi_polygon_simple = [points]

    for polygon_simple in multi_polygon_simple:
        new_poly = []
        for point in polygon_simple:
            x, y = point[:2]  # 740524.429227941 7175355.263524155
            x, y = transform(shp_srs, raster_srs, x, y)  # transform the point # 740520.728530676 7175320.732711278
            j, i = ~raster_transform * (x, y)
            new_poly.append((i, j))  # 2962.534577447921 2457.457061359659
        out_polygons.append(np.array(new_poly))

    return out_polygons


def get_seg_display(seg):
    seg_display = np.zeros([seg.shape[0], seg.shape[1], 4], dtype=np.float)
    if len(seg.shape) == 2:
        seg_display[..., 0] = seg
        seg_display[..., 3] = seg
    else:
        for i in range(seg.shape[-1]):
            seg_display[..., i] = seg[..., i]
        seg_display[..., 3] = np.clip(np.sum(seg, axis=-1), 0, 1)
    return seg_display


def main():
    # --- Params --- #
    config_name = "config.luxcarta_dataset"
    # --- --- #

    # Load config
    config = run_utils.load_config(config_name)
    if config is None:
        print_utils.print_error(
            "ERROR: cannot continue without a config file. Exiting now...")
        exit()

    # Find data_dir
    data_dir = python_utils.choose_first_existing_path(config["data_dir_candidates"])
    if data_dir is None:
        print_utils.print_error("ERROR: Data directory not found!")
        exit()
    else:
        print_utils.print_info("Using data from {}".format(data_dir))
    root_dir = os.path.join(data_dir, config["dataset_params"]["root_dirname"])

    # --- Transforms: --- #
    # --- pre-processing transform (done once then saved on disk):
    train_pre_transform = data_transforms.get_offline_transform(config,
                                                                augmentations=config["data_aug_params"]["enable"])
    eval_pre_transform = data_transforms.get_offline_transform(config, augmentations=False)
    # --- Online transform done on the host (CPU):
    train_online_cpu_transform = data_transforms.get_online_cpu_transform(config,
                                                                          augmentations=config["data_aug_params"][
                                                                              "enable"])
    eval_online_cpu_transform = data_transforms.get_online_cpu_transform(config, augmentations=False)
    # --- Online transform performed on the device (GPU):
    train_online_cuda_transform = data_transforms.get_online_cuda_transform(config,
                                                                            augmentations=config["data_aug_params"][
                                                                                "enable"])
    eval_online_cuda_transform = data_transforms.get_online_cuda_transform(config, augmentations=False)
    # --- --- #

    data_patch_size = config["dataset_params"]["data_patch_size"] if config["data_aug_params"]["enable"] else config["dataset_params"]["input_patch_size"]
    fold = "test"
    if fold == "train":
        dataset = LuxcartaBuildings(root_dir,
                                    transform=train_online_cpu_transform,
                                    patch_size=data_patch_size,
                                    patch_stride=config["dataset_params"]["input_patch_size"],
                                    pre_transform=data_transforms.get_offline_transform_patch(),
                                    fold="train",
                                    pool_size=config["num_workers"])
    elif fold == "test":
        dataset = LuxcartaBuildings(root_dir,
                                    transform=train_online_cpu_transform,
                                    pre_transform=data_transforms.get_offline_transform_patch(),
                                    fold="test",
                                    pool_size=config["num_workers"])

    print("# --- Sample 0 --- #")
    sample = dataset[0]
    print(sample["image"].shape)
    print(sample["gt_polygons_image"].shape)
    print("# --- Samples --- #")
    # for data in tqdm(dataset):
    #     pass

    data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=0)
    print("# --- Batches --- #")
    for batch in tqdm(data_loader):
        print(batch["image"].shape)
        print(batch["gt_polygons_image"].shape)

        # Save output to visualize
        seg = np.array(batch["gt_polygons_image"][0]) / 255  # First batch
        seg = np.moveaxis(seg, 0, -1)
        seg_display = get_seg_display(seg)
        seg_display = (seg_display * 255).astype(np.uint8)
        skimage.io.imsave("gt_seg.png", seg_display)

        im = np.array(batch["image"][0])
        im = np.moveaxis(im, 0, -1)
        skimage.io.imsave('im.png', im)

        input("Enter to continue...")


if __name__ == '__main__':
    main()