File size: 26,819 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import fnmatch
import os.path
import pathlib
import sys
import time
import shapely.geometry
import multiprocess
import itertools
import skimage.io
import numpy as np
from tqdm import tqdm
import torch
import torch.utils.data
import torchvision
from lydorn_utils import run_utils, image_utils, polygon_utils, geo_utils
from lydorn_utils import print_utils
from lydorn_utils import python_utils
from torch_lydorn.torchvision.datasets import utils
CITY_METADATA_DICT = {
"bloomington": {
"fold": "test",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.44583929, 0.46205078, 0.35783887],
"std": [0.18212699, 0.17152641, 0.16157062],
},
"bellingham": {
"fold": "test",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.3766195, 0.391402, 0.32659722],
"std": [0.18134978, 0.16412577, 0.16369793],
},
"innsbruck": {
"fold": "test",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.41375683, 0.41818116, 0.38940192],
"std": [0.16616156, 0.14364722, 0.13317743],
},
"sfo": {
"fold": "test",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.59388761, 0.61522012, 0.54348289],
"std": [0.25730708, 0.23301019, 0.23707742],
},
"tyrol-e": {
"fold": "test",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.44171042, 0.48147037, 0.44642358],
"std": [0.1808623, 0.15437789, 0.15102051],
},
"austin": {
"fold": "train",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.39584444, 0.40599795, 0.38298687],
"std": [0.17341954, 0.16856597, 0.16360443],
},
"chicago": {
"fold": "train",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.4055142, 0.42844002, 0.38229637],
"std": [0.2133328, 0.20827106, 0.20132315],
},
"kitsap": {
"fold": "train",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.34717916, 0.37854108, 0.32571001],
"std": [0.17048794, 0.14537676, 0.13466496],
},
"tyrol-w": {
"fold": "train",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.39704218, 0.4545488, 0.4321427],
"std": [0.19484766, 0.1742585, 0.15186383],
},
"vienna": {
"fold": "train",
"pixelsize": 0.3,
"numbers": list(range(1, 37)),
"mean": [0.47861977, 0.46878486, 0.44043111],
"std": [0.22614806, 0.19949128, 0.19524506],
},
}
IMAGE_DIRNAME = "images"
IMAGE_NAME_FORMAT = "{city}{number}"
IMAGE_FILENAME_FORMAT = IMAGE_NAME_FORMAT + ".tif" # City name, number
class InriaAerial(torch.utils.data.Dataset):
"""
Inria Aerial Image Dataset
"""
def __init__(self, root: str, fold: str="train", pre_process: bool=True, tile_filter=None, patch_size: int=None, patch_stride: int=None,
pre_transform=None, transform=None, small: bool=False, pool_size: int=1, raw_dirname: str="raw", processed_dirname: str="processed",
gt_source: str="disk", gt_type: str="npy", gt_dirname: str="gt_polygons", mask_only: bool=False):
"""
@param root:
@param fold:
@param pre_process: If True, the dataset will be pre-processed first, saving training patches on disk. If False, data will be serve on-the-fly without any patching.
@param tile_filter: Function to call on tile_info, if returns True, include that tile. If returns False, exclude that tile. Does not affect pre-processing.
@param patch_size:
@param patch_stride:
@param pre_transform:
@param transform:
@param small: If True, use a small subset of the dataset (for testing)
@param pool_size:
@param processed_dirname:
@param gt_source: Can be "disk" for annotation that are on disk or "osm" to download from OSM (not implemented)
@param gt_type: Type of annotation files on disk: can be "npy", "geojson" or "tif"
@param gt_dirname: Name of directory with annotation files
@param mask_only: If True, discard the RGB image, sample's "image" field is a single-channel binary mask of the polygons and there is no ground truth segmentation.
This is to allow learning only the frame field from binary masks in order to polygonize binary masks
"""
assert gt_source in {"disk", "osm"}, "gt_source should be disk or osm"
assert gt_type in {"npy", "geojson", "tif"}, f"gt_type should be npy, geojson or tif, not {gt_type}"
self.root = root
self.fold = fold
self.pre_process = pre_process
self.tile_filter = tile_filter
self.patch_size = patch_size
self.patch_stride = patch_stride
self.pre_transform = pre_transform
self.transform = transform
self.small = small
if self.small:
print_utils.print_info("INFO: Using small version of the Inria dataset.")
self.pool_size = pool_size
self.raw_dirname = raw_dirname
self.gt_source = gt_source
self.gt_type = gt_type
self.gt_dirname = gt_dirname
self.mask_only = mask_only
# Fill default values
if self.gt_source == "disk":
print_utils.print_info("INFO: annotations will be loaded from disk")
elif self.gt_source == "osm":
print_utils.print_info("INFO: annotations will be downloaded from OSM. "
"Make sure you have an internet connection to the OSM servers!")
if self.pre_process:
# Setup of pre-process
processed_dirname_extention = f"{processed_dirname}.source_{self.gt_source}.type_{self.gt_type}"
if self.gt_dirname is not None:
processed_dirname_extention += f".dirname_{self.gt_dirname}"
if self.mask_only:
processed_dirname_extention += f".mask_only_{int(self.mask_only)}"
processed_dirname_extention += f".patch_size_{int(self.patch_size)}"
self.processed_dirpath = os.path.join(self.root, processed_dirname_extention, self.fold)
self.stats_filepath = os.path.join(self.processed_dirpath, "stats-small.pt" if self.small else "stats.pt")
self.processed_flag_filepath = os.path.join(self.processed_dirpath,
"processed_flag-small" if self.small else "processed_flag")
# Check if dataset has finished pre-processing by checking flag:
if os.path.exists(self.processed_flag_filepath):
# Process done, load stats
self.stats = torch.load(self.stats_filepath)
else:
# Pre-process not finished, launch it:
tile_info_list = self.get_tile_info_list(tile_filter=None)
self.stats = self.process(tile_info_list)
# Save stats
torch.save(self.stats, self.stats_filepath)
# Mark dataset as processed with flag
pathlib.Path(self.processed_flag_filepath).touch()
# Get processed_relative_paths with filter
tile_info_list = self.get_tile_info_list(tile_filter=self.tile_filter)
self.processed_relative_paths = self.get_processed_relative_paths(tile_info_list)
else:
# Setup data sample list
self.tile_info_list = self.get_tile_info_list(tile_filter=self.tile_filter)
def get_tile_info_list(self, tile_filter=None):
tile_info_list = []
for city, info in CITY_METADATA_DICT.items():
if not info["fold"] == self.fold:
continue
if self.small:
numbers = [*info["numbers"][:5], info["numbers"][-1]]
else:
numbers = info["numbers"]
for number in numbers:
image_info = {
"city": city,
"number": number,
"pixelsize": info["pixelsize"],
"mean": np.array(info["mean"]),
"std": np.array(info["std"]),
}
tile_info_list.append(image_info)
if tile_filter is not None:
tile_info_list = list(filter(self.tile_filter, tile_info_list))
return tile_info_list
def get_processed_relative_paths(self, tile_info_list):
processed_relative_paths = []
for tile_info in tile_info_list:
processed_tile_relative_dirpath = os.path.join(tile_info['city'], f"{tile_info['number']:02d}")
processed_tile_dirpath = os.path.join(self.processed_dirpath, processed_tile_relative_dirpath)
sample_filenames = fnmatch.filter(os.listdir(processed_tile_dirpath), "data.*.pt")
processed_tile_relative_paths = [os.path.join(processed_tile_relative_dirpath, sample_filename) for sample_filename
in sample_filenames]
processed_relative_paths.extend(processed_tile_relative_paths)
return sorted(processed_relative_paths)
def process(self, tile_info_list):
# os.makedirs(os.path.join(self.root, self.processed_dirname), exist_ok=True)
with multiprocess.Pool(self.pool_size) as p:
stats_all = list(
tqdm(p.imap(self._process_one, tile_info_list), total=len(tile_info_list), desc="Process"))
stats = {}
if not self.mask_only:
stats_all = list(filter(None.__ne__, stats_all))
stat_lists = {}
for stats_one in stats_all:
for key, stat in stats_one.items():
if key in stat_lists:
stat_lists[key].append(stat)
else:
stat_lists[key] = [stat]
# Aggregate stats
if "class_freq" in stat_lists and "num" in stat_lists:
class_freq_array = np.stack(stat_lists["class_freq"], axis=0)
num_array = np.stack(stat_lists["num"], axis=0)
if num_array.min() == 0:
raise ZeroDivisionError("num_array has some zeros values, cannot divide!")
stats["class_freq"] = np.sum(class_freq_array*num_array[:, None], axis=0) / np.sum(num_array)
return stats
def load_raw_data(self, tile_info):
raw_data = {}
# Image:
raw_data["image_filepath"] = os.path.join(self.root, self.raw_dirname, self.fold, IMAGE_DIRNAME,
IMAGE_FILENAME_FORMAT.format(city=tile_info["city"], number=tile_info["number"]))
raw_data["image"] = skimage.io.imread(raw_data["image_filepath"])
assert len(raw_data["image"].shape) == 3 and raw_data["image"].shape[2] == 3, f"image should have shape (H, W, 3), not {raw_data['image'].shape}..."
# Annotations:
if self.gt_source == "disk":
gt_base_filepath = os.path.join(self.root, self.raw_dirname, self.fold, self.gt_dirname,
IMAGE_NAME_FORMAT.format(city=tile_info["city"],
number=tile_info["number"]))
gt_filepath = gt_base_filepath + "." + self.gt_type
if not os.path.exists(gt_filepath):
raw_data["gt_polygons"] = []
return raw_data
if self.gt_type == "npy":
np_gt_polygons = np.load(gt_filepath, allow_pickle=True)
gt_polygons = []
for np_gt_polygon in np_gt_polygons:
try:
gt_polygons.append(shapely.geometry.Polygon(np_gt_polygon[:, ::-1]))
except ValueError:
# Invalid polygon, continue without it
continue
raw_data["gt_polygons"] = gt_polygons
elif self.gt_type == "geojson":
geojson = python_utils.load_json(gt_filepath)
raw_data["gt_polygons"] = list(shapely.geometry.shape(geojson))
elif self.gt_type == "tif":
raw_data["gt_polygons_image"] = skimage.io.imread(gt_filepath)[:, :, None]
assert len(raw_data["gt_polygons_image"].shape) == 3 and raw_data["gt_polygons_image"].shape[2] == 1, \
f"Mask should have shape (H, W, 1), not {raw_data['gt_polygons_image'].shape}..."
elif self.gt_source == "osm":
raise NotImplementedError(
"Downloading from OSM is not implemented (takes too long to download, better download to disk first...).")
# np_gt_polygons = geo_utils.get_polygons_from_osm(image_filepath, tag="building", ij_coords=False)
return raw_data
def _process_one(self, tile_info):
process_id = int(multiprocess.current_process().name[-1])
# print(f"\n--- {process_id} ---\n")
# --- Init
tile_name = IMAGE_NAME_FORMAT.format(city=tile_info["city"], number=tile_info["number"])
processed_tile_relative_dirpath = os.path.join(tile_info['city'], f"{tile_info['number']:02d}")
processed_tile_dirpath = os.path.join(self.processed_dirpath, processed_tile_relative_dirpath)
processed_flag_filepath = os.path.join(processed_tile_dirpath, "processed_flag")
stats_filepath = os.path.join(processed_tile_dirpath, "stats.pt")
os.makedirs(processed_tile_dirpath, exist_ok=True)
stats = {}
# --- Check if tile has been processed already
if os.path.exists(processed_flag_filepath):
if not self.mask_only:
stats = torch.load(stats_filepath)
return stats
# --- Read data:
raw_data = self.load_raw_data(tile_info)
# --- Patch tiles
if self.patch_size is not None:
patch_stride = self.patch_stride if self.patch_stride is not None else self.patch_size
patch_boundingboxes = image_utils.compute_patch_boundingboxes(raw_data["image"].shape[0:2],
stride=patch_stride,
patch_res=self.patch_size)
class_freq_list = []
for i, bbox in enumerate(tqdm(patch_boundingboxes, desc=f"Patching {tile_name}", leave=False, position=process_id)):
sample = {
"image_filepath": raw_data["image_filepath"],
"name": f"{tile_name}.rowmin_{bbox[0]}_colmin_{bbox[1]}_rowmax_{bbox[2]}_colmax_{bbox[3]}",
"bbox": bbox,
"city": tile_info["city"],
"number": tile_info["number"],
}
if self.gt_type == "npy" or self.gt_type == "geojson":
patch_gt_polygons = polygon_utils.patch_polygons(raw_data["gt_polygons"], minx=bbox[1], miny=bbox[0],
maxx=bbox[3], maxy=bbox[2])
sample["gt_polygons"] = patch_gt_polygons
elif self.gt_type == "tif":
patch_gt_mask = raw_data["gt_polygons_image"][bbox[0]:bbox[2], bbox[1]:bbox[3], :]
sample["gt_polygons_image"] = patch_gt_mask
sample["image"] = raw_data["image"][bbox[0]:bbox[2], bbox[1]:bbox[3], :]
sample = self.pre_transform(sample) # Needs "image" to infer shape even if mask_only is True
if self.mask_only:
del sample["image"] # Don't need RGB image anymore
relative_filepath = os.path.join(processed_tile_relative_dirpath, "data.{:06d}.pt".format(i))
filepath = os.path.join(self.processed_dirpath, relative_filepath)
torch.save(sample, filepath)
# Compute stats
if not self.mask_only:
if self.gt_type == "npy" or self.gt_type == "geojson":
class_freq_list.append(np.mean(sample["gt_polygons_image"], axis=(0, 1)) / 255)
elif self.gt_type == "mask":
raise NotImplementedError("mask class freq")
else:
raise NotImplementedError(f"gt_type={self.gt_type} not implemented for computing stats")
# Aggregate stats
if not self.mask_only:
if len(class_freq_list):
class_freq_array = np.stack(class_freq_list, axis=0)
stats["class_freq"] = np.mean(class_freq_array, axis=0)
stats["num"] = len(class_freq_list)
else:
print("Empty tile:", tile_info["city"], tile_info["number"], "polygons:", len(raw_data["gt_polygons"]))
else:
raise NotImplemented("patch_size is None")
# Save stats
if not self.mask_only:
torch.save(stats, stats_filepath)
# Mark tile as processed with flag
pathlib.Path(processed_flag_filepath).touch()
return stats
def __len__(self):
if self.pre_process:
return len(self.processed_relative_paths)
else:
return len(self.tile_info_list)
def __getitem__(self, idx):
if self.pre_process:
filepath = os.path.join(self.processed_dirpath, self.processed_relative_paths[idx])
data = torch.load(filepath)
if self.mask_only:
data["image"] = np.repeat(data["gt_polygons_image"][:, :, 0:1], 3, axis=-1) # Fill image slot
data["image_mean"] = np.array([0.5, 0.5, 0.5])
data["image_std"] = np.array([1, 1, 1])
else:
data["image_mean"] = np.array(CITY_METADATA_DICT[data["city"]]["mean"])
data["image_std"] = np.array(CITY_METADATA_DICT[data["city"]]["std"])
data["class_freq"] = self.stats["class_freq"]
else:
tile_info = self.tile_info_list[idx]
# Load raw data
data = self.load_raw_data(tile_info)
data["name"] = IMAGE_NAME_FORMAT.format(city=tile_info["city"], number=tile_info["number"])
data["image_mean"] = np.array(tile_info["mean"])
data["image_std"] = np.array(tile_info["std"])
data = self.transform(data)
return data
def main():
# Test using transforms from the frame_field_learning project:
from frame_field_learning import data_transforms
config = {
"data_dir_candidates": [
"/data/titane/user/nigirard/data",
"~/data",
"/data"
],
"dataset_params": {
"root_dirname": "AerialImageDataset",
"pre_process": False,
"gt_source": "disk",
"gt_type": "tif",
"gt_dirname": "gt",
"mask_only": False,
"small": True,
"data_patch_size": 425,
"input_patch_size": 300,
"train_fraction": 0.75
},
"num_workers": 8,
"data_aug_params": {
"enable": True,
"vflip": True,
"affine": True,
"scaling": [0.9, 1.1],
"color_jitter": True,
"device": "cuda"
}
}
# Find data_dir
data_dir = python_utils.choose_first_existing_path(config["data_dir_candidates"])
if data_dir is None:
print_utils.print_error("ERROR: Data directory not found!")
exit()
else:
print_utils.print_info("Using data from {}".format(data_dir))
root_dir = os.path.join(data_dir, config["dataset_params"]["root_dirname"])
# --- Transforms: --- #
# --- pre-processing transform (done once then saved on disk):
# --- Online transform done on the host (CPU):
online_cpu_transform = data_transforms.get_online_cpu_transform(config,
augmentations=config["data_aug_params"]["enable"])
train_online_cuda_transform = data_transforms.get_online_cuda_transform(config, augmentations=config["data_aug_params"]["enable"])
mask_only = config["dataset_params"]["mask_only"]
kwargs = {
"pre_process": config["dataset_params"]["pre_process"],
"transform": online_cpu_transform,
"patch_size": config["dataset_params"]["data_patch_size"],
"patch_stride": config["dataset_params"]["input_patch_size"],
"pre_transform": data_transforms.get_offline_transform_patch(distances=not mask_only, sizes=not mask_only),
"small": config["dataset_params"]["small"],
"pool_size": config["num_workers"],
"gt_source": config["dataset_params"]["gt_source"],
"gt_type": config["dataset_params"]["gt_type"],
"gt_dirname": config["dataset_params"]["gt_dirname"],
"mask_only": config["dataset_params"]["mask_only"],
}
train_val_split_point = config["dataset_params"]["train_fraction"] * 36
def train_tile_filter(tile): return tile["number"] <= train_val_split_point
def val_tile_filter(tile): return train_val_split_point < tile["number"]
# --- --- #
fold = "train"
if fold == "train":
dataset = InriaAerial(root_dir, fold="train", tile_filter=train_tile_filter, **kwargs)
elif fold == "val":
dataset = InriaAerial(root_dir, fold="train", tile_filter=val_tile_filter, **kwargs)
elif fold == "test":
dataset = InriaAerial(root_dir, fold="test", **kwargs)
print(f"dataset has {len(dataset)} samples.")
print("# --- Sample 0 --- #")
sample = dataset[0]
for key, item in sample.items():
print("{}: {}".format(key, type(item)))
print("# --- Samples --- #")
# for data in tqdm(dataset):
# pass
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=config["num_workers"])
print("# --- Batches --- #")
for batch in tqdm(data_loader):
# batch["distances"] = batch["distances"].float()
# batch["sizes"] = batch["sizes"].float()
# im = np.array(batch["image"][0])
# im = np.moveaxis(im, 0, -1)
# skimage.io.imsave('im_before_transform.png', im)
#
# distances = np.array(batch["distances"][0])
# distances = np.moveaxis(distances, 0, -1)
# skimage.io.imsave('distances_before_transform.png', distances)
#
# sizes = np.array(batch["sizes"][0])
# sizes = np.moveaxis(sizes, 0, -1)
# skimage.io.imsave('sizes_before_transform.png', sizes)
print("----")
print(batch["name"])
print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
im = np.array(batch["image"][0])
im = np.moveaxis(im, 0, -1)
skimage.io.imsave('im.png', im)
if "gt_polygons_image" in batch:
print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
batch["gt_polygons_image"].max().item())
seg = np.array(batch["gt_polygons_image"][0]) / 255
seg = np.moveaxis(seg, 0, -1)
seg_display = utils.get_seg_display(seg)
seg_display = (seg_display * 255).astype(np.uint8)
skimage.io.imsave("gt_seg.png", seg_display)
if "gt_crossfield_angle" in batch:
print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
batch["gt_crossfield_angle"].max().item())
gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)
if "distances" in batch:
print("distances:", batch["distances"].shape, batch["distances"].min().item(), batch["distances"].max().item())
distances = np.array(batch["distances"][0])
distances = np.moveaxis(distances, 0, -1)
skimage.io.imsave('distances.png', distances)
if "sizes" in batch:
print("sizes:", batch["sizes"].shape, batch["sizes"].min().item(), batch["sizes"].max().item())
sizes = np.array(batch["sizes"][0])
sizes = np.moveaxis(sizes, 0, -1)
skimage.io.imsave('sizes.png', sizes)
# valid_mask = np.array(batch["valid_mask"][0])
# valid_mask = np.moveaxis(valid_mask, 0, -1)
# skimage.io.imsave('valid_mask.png', valid_mask)
print("Apply online tranform:")
batch = utils.batch_to_cuda(batch)
batch = train_online_cuda_transform(batch)
batch = utils.batch_to_cpu(batch)
print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(), batch["gt_polygons_image"].max().item())
print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(), batch["gt_crossfield_angle"].max().item())
# print("distances:", batch["distances"].shape, batch["distances"].min().item(), batch["distances"].max().item())
# print("sizes:", batch["sizes"].shape, batch["sizes"].min().item(), batch["sizes"].max().item())
# Save output to visualize
seg = np.array(batch["gt_polygons_image"][0])
seg = np.moveaxis(seg, 0, -1)
seg_display = utils.get_seg_display(seg)
seg_display = (seg_display * 255).astype(np.uint8)
skimage.io.imsave("gt_seg.png", seg_display)
im = np.array(batch["image"][0])
im = np.moveaxis(im, 0, -1)
skimage.io.imsave('im.png', im)
gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)
distances = np.array(batch["distances"][0])
distances = np.moveaxis(distances, 0, -1)
skimage.io.imsave('distances.png', distances)
sizes = np.array(batch["sizes"][0])
sizes = np.moveaxis(sizes, 0, -1)
skimage.io.imsave('sizes.png', sizes)
# valid_mask = np.array(batch["valid_mask"][0])
# valid_mask = np.moveaxis(valid_mask, 0, -1)
# skimage.io.imsave('valid_mask.png', valid_mask)
input("Press enter to continue...")
if __name__ == '__main__':
main()
|