Spaces:
Sleeping
Sleeping
File size: 1,461 Bytes
d24bd61 90d0a81 30b123a 46bcd76 6915dbd 5add6b6 2cb9c9a 04adfa1 46bcd76 6915dbd 2cb9c9a d24bd61 46bcd76 5add6b6 46bcd76 5add6b6 46bcd76 2cb9c9a 30b123a 2cb9c9a 30b123a a7223db 30b123a a7223db 2cb9c9a 30b123a a7223db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
from fastapi import FastAPI
from fastapi.responses import Response
from fastapi.responses import FileResponse
from pydantic import BaseModel
import random
import matplotlib.pyplot as plt
import pandas as pd
import io
app = FastAPI()
# Define the ticket schema using Pydantic
class Ticket(BaseModel):
name: str
department: str
category: str
description: str
service_category: str
difficulty: int # Adjust type as needed (e.g., int or str)
class Code(BaseModel):
code: str
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.post("/ticket")
async def create_ticket(ticket: Ticket):
# Here you can process the ticket, e.g., save it to a database.
# For now, we simply return the received ticket data.
tick = ticket.dict()
tick["number"] = random.randint(1000, 9999)
return {
"message": "Ticket created successfully",
"ticket": tick
}
@app.post("/run_code")
async def run_code(code: Code):
# img_buffer = io.BytesIO()
exec(code.code)
# img_buffer.seek(0) # Reset buffer position
file_path = "graph.pdf"
fig.save_fig(file_path)
plt.close()
# plt.savefig(file_path)
# plt.close()
# Return image as response
# return Response(content=img_buffer.getvalue(), media_type="image/png")
# return FileResponse(file_path, media_type="image/png")
return FileResponse(file_path, media_type="application/pdf", filename="graph.pdf") |