Eason918 commited on
Commit
209f80e
·
verified ·
1 Parent(s): b320c68

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -7
README.md CHANGED
@@ -1,13 +1,81 @@
1
  ---
2
- title: Malicious Email And Url Detector V2
3
- emoji: 🦀
4
- colorFrom: pink
5
- colorTo: indigo
6
  sdk: streamlit
7
- sdk_version: 1.44.0
8
  app_file: app.py
9
  pinned: false
10
- short_description: A web app for detecting malicious Email and URL version 2
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Malicious Email & URL Detector v2
3
+ emoji: 🛡️
4
+ colorFrom: red
5
+ colorTo: yellow
6
  sdk: streamlit
7
+ sdk_version: 1.43.2
8
  app_file: app.py
9
  pinned: false
10
+ short_description: A web app for detecting malicious emails and URLs
11
  ---
12
 
13
+ # Malicious Email & URL Detector v2
14
+
15
+ A lightweight **Streamlit** web application that utilizes a fine-tuned deep learning model to detect malicious content in emails and URLs. The app helps individuals and organizations identify threats such as **phishing** and **malware** before any harm can occur.
16
+
17
+ ---
18
+
19
+ ## Key Features
20
+
21
+ - **Real-Time Detection**
22
+ Quickly classifies emails or URLs as **malicious** or **benign** using a fine-tuned transformer model.
23
+ - **User-Friendly Interface**
24
+ Paste the email text or URL, then click a button—no advanced knowledge required.
25
+ - **Lightweight & Fast**
26
+ Built on Streamlit for a snappy, interactive experience.
27
+
28
+ ---
29
+
30
+ ## How It Works
31
+
32
+ 1. **Model**
33
+ A fine-tuned variant of [distilroberta-base](https://huggingface.co/distilroberta-base) trained on a curated dataset of phishing, malware, and legitimate examples.
34
+ 2. **Input**
35
+ Users provide either an email’s textual content or a single URL. The app normalizes and processes the input.
36
+ 3. **Inference**
37
+ The model returns a **label** (malicious/benign) and a **confidence score**, enabling quick decisions on blocking or flagging potential threats.
38
+
39
+ ---
40
+
41
+ ## Quickstart
42
+
43
+ 1. **Clone the Repository**
44
+ ```bash
45
+ git clone https://huggingface.co/spaces/your-username/Malicious-Email-and-URL-Detector-v2
46
+ cd Malicious-Email-and-URL-Detector-v2
47
+
48
+ 2. **Install Dependencies**
49
+ pip install -r requirements.txt
50
+
51
+ 3. **Run the App**
52
+ streamlit run app.py
53
+
54
+ 4. **Use It**
55
+ Step 1: Paste the email content or URL into the input box.
56
+
57
+ Step 2: Click Analyze.
58
+
59
+ Step 3: View the output displaying the classification (malicious or benign) and the confidence score.
60
+
61
+ 6. **Example**
62
+
63
+ Input:
64
+
65
+ "Hello, your account has been locked. Please verify at http://suspicious-link.com"
66
+
67
+ Output:
68
+
69
+ Malicious (Confidence: 0.95)
70
+
71
+
72
+ ## Limitations
73
+ Limitations
74
+ False Positives/Negatives: No model is perfect. Always combine with other security measures.
75
+
76
+ Dataset Bias: Performance depends on how well the training data represents real-world threats.
77
+
78
+ Evolving Threats: Regular updates are recommended to keep pace with new phishing or malware tactics.
79
+
80
+ ## Contact
81
+ Author: Eason Liu