Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,567 Bytes
3aba902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import argparse
from typing import Any, Dict, List, Literal, Tuple
import pandas as pd
import os
import sys
import torch
from diffusers import (
CogVideoXPipeline,
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXVideoToVideoPipeline,
)
from diffusers.utils import export_to_video, load_image, load_video
import numpy as np
import random
import cv2
from pathlib import Path
import decord
from torchvision import transforms
from torchvision.transforms.functional import resize
import PIL.Image
from PIL import Image
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(current_dir, '..'))
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking, CogVideoXPipelineTracking, CogVideoXVideoToVideoPipelineTracking
from training.dataset import VideoDataset, VideoDatasetWithResizingTracking
class VideoDatasetWithResizingTrackingEval(VideoDataset):
def __init__(self, *args, **kwargs) -> None:
self.tracking_column = kwargs.pop("tracking_column", None)
self.image_paths = kwargs.pop("image_paths", None)
super().__init__(*args, **kwargs)
def _preprocess_video(self, path: Path, tracking_path: Path, image_paths: Path = None) -> torch.Tensor:
if self.load_tensors:
return self._load_preprocessed_latents_and_embeds(path, tracking_path)
else:
video_reader = decord.VideoReader(uri=path.as_posix())
video_num_frames = len(video_reader)
nearest_frame_bucket = min(
self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
)
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)
image = Image.open(image_paths)
if image.mode != 'RGB':
image = image.convert('RGB')
image = torch.from_numpy(np.array(image)).float()
image = image.permute(2, 0, 1).contiguous()
image = resize(image, nearest_res)
image = self.video_transforms(image)
tracking_reader = decord.VideoReader(uri=tracking_path.as_posix())
tracking_frames = tracking_reader.get_batch(frame_indices)
tracking_frames = tracking_frames[:nearest_frame_bucket].float()
tracking_frames = tracking_frames.permute(0, 3, 1, 2).contiguous()
tracking_frames_resized = torch.stack([resize(tracking_frame, nearest_res) for tracking_frame in tracking_frames], dim=0)
tracking_frames = torch.stack([self.video_transforms(tracking_frame) for tracking_frame in tracking_frames_resized], dim=0)
return image, frames, tracking_frames, None
def _find_nearest_resolution(self, height, width):
nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
return nearest_res[1], nearest_res[2]
def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str], List[str]]:
if not self.data_root.exists():
raise ValueError("Root folder for videos does not exist")
prompt_path = self.data_root.joinpath(self.caption_column)
video_path = self.data_root.joinpath(self.video_column)
tracking_path = self.data_root.joinpath(self.tracking_column)
image_paths = self.data_root.joinpath(self.image_paths)
if not prompt_path.exists() or not prompt_path.is_file():
raise ValueError(
"Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
)
if not video_path.exists() or not video_path.is_file():
raise ValueError(
"Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
)
if not tracking_path.exists() or not tracking_path.is_file():
raise ValueError(
"Expected `--tracking_column` to be path to a file in `--data_root` containing line-separated tracking information."
)
with open(prompt_path, "r", encoding="utf-8") as file:
prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
with open(video_path, "r", encoding="utf-8") as file:
video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
with open(tracking_path, "r", encoding="utf-8") as file:
tracking_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
with open(image_paths, "r", encoding="utf-8") as file:
image_paths_list = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
if not self.load_tensors and any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
)
self.tracking_paths = tracking_paths
self.image_paths = image_paths_list
return prompts, video_paths
def _load_dataset_from_csv(self) -> Tuple[List[str], List[str], List[str]]:
df = pd.read_csv(self.dataset_file)
prompts = df[self.caption_column].tolist()
video_paths = df[self.video_column].tolist()
tracking_paths = df[self.tracking_column].tolist()
image_paths = df[self.image_paths].tolist()
video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]
tracking_paths = [self.data_root.joinpath(line.strip()) for line in tracking_paths]
image_paths = [self.data_root.joinpath(line.strip()) for line in image_paths]
if any(not path.is_file() for path in video_paths):
raise ValueError(
f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found at least one path that is not a valid file."
)
self.tracking_paths = tracking_paths
self.image_paths = image_paths
return prompts, video_paths
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
return index
if self.load_tensors:
image_latents, video_latents, prompt_embeds = self._preprocess_video(self.video_paths[index], self.tracking_paths[index])
# The VAE's temporal compression ratio is 4.
# The VAE's spatial compression ratio is 8.
latent_num_frames = video_latents.size(1)
if latent_num_frames % 2 == 0:
num_frames = latent_num_frames * 4
else:
num_frames = (latent_num_frames - 1) * 4 + 1
height = video_latents.size(2) * 8
width = video_latents.size(3) * 8
return {
"prompt": prompt_embeds,
"image": image_latents,
"video": video_latents,
"tracking_map": tracking_map,
"video_metadata": {
"num_frames": num_frames,
"height": height,
"width": width,
},
}
else:
image, video, tracking_map, _ = self._preprocess_video(self.video_paths[index], self.tracking_paths[index], self.image_paths[index])
return {
"prompt": self.id_token + self.prompts[index],
"image": image,
"video": video,
"tracking_map": tracking_map,
"video_metadata": {
"num_frames": video.shape[0],
"height": video.shape[2],
"width": video.shape[3],
},
}
def _load_preprocessed_latents_and_embeds(self, path: Path, tracking_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
filename_without_ext = path.name.split(".")[0]
pt_filename = f"{filename_without_ext}.pt"
# The current path is something like: /a/b/c/d/videos/00001.mp4
# We need to reach: /a/b/c/d/video_latents/00001.pt
image_latents_path = path.parent.parent.joinpath("image_latents")
video_latents_path = path.parent.parent.joinpath("video_latents")
tracking_map_path = path.parent.parent.joinpath("tracking_map")
embeds_path = path.parent.parent.joinpath("prompt_embeds")
if (
not video_latents_path.exists()
or not embeds_path.exists()
or not tracking_map_path.exists()
or (self.image_to_video and not image_latents_path.exists())
):
raise ValueError(
f"When setting the load_tensors parameter to `True`, it is expected that the `{self.data_root=}` contains folders named `video_latents`, `prompt_embeds`, and `tracking_map`. However, these folders were not found. Please make sure to have prepared your data correctly using `prepare_data.py`. Additionally, if you're training image-to-video, it is expected that an `image_latents` folder is also present."
)
if self.image_to_video:
image_latent_filepath = image_latents_path.joinpath(pt_filename)
video_latent_filepath = video_latents_path.joinpath(pt_filename)
tracking_map_filepath = tracking_map_path.joinpath(pt_filename)
embeds_filepath = embeds_path.joinpath(pt_filename)
if not video_latent_filepath.is_file() or not embeds_filepath.is_file() or not tracking_map_filepath.is_file():
if self.image_to_video:
image_latent_filepath = image_latent_filepath.as_posix()
video_latent_filepath = video_latent_filepath.as_posix()
tracking_map_filepath = tracking_map_filepath.as_posix()
embeds_filepath = embeds_filepath.as_posix()
raise ValueError(
f"The file {video_latent_filepath=} or {embeds_filepath=} or {tracking_map_filepath=} could not be found. Please ensure that you've correctly executed `prepare_dataset.py`."
)
images = (
torch.load(image_latent_filepath, map_location="cpu", weights_only=True) if self.image_to_video else None
)
latents = torch.load(video_latent_filepath, map_location="cpu", weights_only=True)
tracking_map = torch.load(tracking_map_filepath, map_location="cpu", weights_only=True)
embeds = torch.load(embeds_filepath, map_location="cpu", weights_only=True)
return images, latents, tracking_map, embeds
def sample_from_dataset(
data_root: str,
caption_column: str,
tracking_column: str,
image_paths: str,
video_column: str,
num_samples: int = -1,
random_seed: int = 42
):
"""Sample from dataset"""
if image_paths:
# If image_paths is provided, use VideoDatasetWithResizingTrackingEval
dataset = VideoDatasetWithResizingTrackingEval(
data_root=data_root,
caption_column=caption_column,
tracking_column=tracking_column,
image_paths=image_paths,
video_column=video_column,
max_num_frames=49,
load_tensors=False,
random_flip=None,
frame_buckets=[49],
image_to_video=True
)
else:
# If image_paths is not provided, use VideoDatasetWithResizingTracking
dataset = VideoDatasetWithResizingTracking(
data_root=data_root,
caption_column=caption_column,
tracking_column=tracking_column,
video_column=video_column,
max_num_frames=49,
load_tensors=False,
random_flip=None,
frame_buckets=[49],
image_to_video=True
)
# Set random seed
random.seed(random_seed)
# Randomly sample from dataset
total_samples = len(dataset)
if num_samples == -1:
# If num_samples is -1, process all samples
selected_indices = range(total_samples)
else:
selected_indices = random.sample(range(total_samples), min(num_samples, total_samples))
samples = []
for idx in selected_indices:
sample = dataset[idx]
# Get data based on dataset.__getitem__ return value
image = sample["image"] # Already processed tensor
video = sample["video"] # Already processed tensor
tracking_map = sample["tracking_map"] # Already processed tensor
prompt = sample["prompt"]
samples.append({
"prompt": prompt,
"tracking_frame": tracking_map[0], # Get first frame
"video_frame": image, # Get first frame
"video": video, # Complete video
"tracking_maps": tracking_map, # Complete tracking maps
"height": sample["video_metadata"]["height"],
"width": sample["video_metadata"]["width"]
})
return samples
def generate_video(
prompt: str,
model_path: str,
tracking_path: str = None,
output_path: str = "./output.mp4",
image_or_video_path: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
generate_type: str = Literal["i2v", "i2vo"], # i2v: image to video, i2vo: original CogVideoX-5b-I2V
seed: int = 42,
data_root: str = None,
caption_column: str = None,
tracking_column: str = None,
video_column: str = None,
image_paths: str = None,
num_samples: int = -1,
evaluation_dir: str = "evaluations",
fps: int = 8,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
# If dataset parameters are provided, sample from dataset
samples = None
if all([data_root, caption_column, tracking_column, video_column]):
samples = sample_from_dataset(
data_root=data_root,
caption_column=caption_column,
tracking_column=tracking_column,
image_paths=image_paths,
video_column=video_column,
num_samples=num_samples,
random_seed=seed
)
# Load model and data
if generate_type == "i2v":
pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype)
if not samples:
image = load_image(image=image_or_video_path)
height, width = image.height, image.width
else:
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=dtype)
if not samples:
image = load_image(image=image_or_video_path)
height, width = image.height, image.width
# Set model parameters
pipe.to(device, dtype=dtype)
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
pipe.transformer.gradient_checkpointing = False
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Generate video
if samples:
from tqdm import tqdm
for i, sample in tqdm(enumerate(samples), desc="Samples Num:"):
print(f"Prompt: {sample['prompt'][:30]}")
tracking_frame = sample["tracking_frame"].to(device=device, dtype=dtype)
video_frame = sample["video_frame"].to(device=device, dtype=dtype)
video = sample["video"].to(device=device, dtype=dtype)
tracking_maps = sample["tracking_maps"].to(device=device, dtype=dtype)
# VAE
print("encoding tracking maps")
tracking_video = tracking_maps
tracking_maps = tracking_maps.unsqueeze(0)
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
with torch.no_grad():
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
pipeline_args = {
"prompt": sample["prompt"],
"negative_prompt": "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
"num_inference_steps": num_inference_steps,
"num_frames": 49,
"use_dynamic_cfg": True,
"guidance_scale": guidance_scale,
"generator": torch.Generator(device=device).manual_seed(seed),
"height": sample["height"],
"width": sample["width"]
}
pipeline_args["image"] = (video_frame + 1.0) / 2.0
if tracking_column and generate_type == "i2v":
pipeline_args["tracking_maps"] = tracking_maps
pipeline_args["tracking_image"] = (tracking_frame.unsqueeze(0) + 1.0) / 2.0
with torch.no_grad():
video_generate = pipe(**pipeline_args).frames[0]
output_dir = os.path.join(data_root, evaluation_dir)
output_name = f"{i:04d}.mp4"
output_file = os.path.join(output_dir, output_name)
os.makedirs(output_dir, exist_ok=True)
export_concat_video(video_generate, video, tracking_video, output_file, fps=fps)
else:
pipeline_args = {
"prompt": prompt,
"num_videos_per_prompt": num_videos_per_prompt,
"num_inference_steps": num_inference_steps,
"num_frames": 49,
"use_dynamic_cfg": True,
"guidance_scale": guidance_scale,
"generator": torch.Generator().manual_seed(seed),
}
pipeline_args["video"] = video
pipeline_args["image"] = image
pipeline_args["height"] = height
pipeline_args["width"] = width
if tracking_path and generate_type == "i2v":
tracking_maps = load_video(tracking_path)
tracking_maps = torch.stack([
torch.from_numpy(np.array(frame)).permute(2, 0, 1).float() / 255.0
for frame in tracking_maps
]).to(device=device, dtype=dtype)
tracking_video = tracking_maps
tracking_maps = tracking_maps.unsqueeze(0)
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)
with torch.no_grad():
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)
pipeline_args["tracking_maps"] = tracking_maps
pipeline_args["tracking_image"] = tracking_maps[:, :1]
with torch.no_grad():
video_generate = pipe(**pipeline_args).frames[0]
output_dir = os.path.join(data_root, evaluation_dir)
output_name = f"{os.path.splitext(os.path.basename(image_or_video_path))[0]}.mp4"
output_file = os.path.join(output_dir, output_name)
os.makedirs(output_dir, exist_ok=True)
export_concat_video(video_generate, video, tracking_video, output_file, fps=fps)
def create_frame_grid(frames: List[np.ndarray], interval: int = 9, max_cols: int = 7) -> np.ndarray:
"""
Arrange video frames into a grid image by sampling at intervals
Args:
frames: List of video frames
interval: Sampling interval
max_cols: Maximum number of frames per row
Returns:
Grid image array
"""
# Sample frames at intervals
sampled_frames = frames[::interval]
# Calculate number of rows and columns
n_frames = len(sampled_frames)
n_cols = min(max_cols, n_frames)
n_rows = (n_frames + n_cols - 1) // n_cols
# Get height and width of single frame
frame_height, frame_width = sampled_frames[0].shape[:2]
# Create blank canvas
grid = np.zeros((frame_height * n_rows, frame_width * n_cols, 3), dtype=np.uint8)
# Fill frames
for idx, frame in enumerate(sampled_frames):
i = idx // n_cols
j = idx % n_cols
grid[i*frame_height:(i+1)*frame_height, j*frame_width:(j+1)*frame_width] = frame
return grid
def export_concat_video(
generated_frames: List[PIL.Image.Image],
original_video: torch.Tensor,
tracking_maps: torch.Tensor = None,
output_video_path: str = None,
fps: int = 8
) -> str:
"""
Export generated video frames, original video and tracking maps as video files,
and save sampled frames to different folders
"""
import imageio
import os
if output_video_path is None:
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
# Create subdirectories
base_dir = os.path.dirname(output_video_path)
generated_dir = os.path.join(base_dir, "generated") # For storing generated videos
group_dir = os.path.join(base_dir, "group") # For storing concatenated videos
# Get filename (without path) and create video-specific folder
filename = os.path.basename(output_video_path)
name_without_ext = os.path.splitext(filename)[0]
video_frames_dir = os.path.join(base_dir, "frames", name_without_ext) # frames/video_name/
# Create three subdirectories under video-specific folder
groundtruth_dir = os.path.join(video_frames_dir, "gt")
generated_frames_dir = os.path.join(video_frames_dir, "generated")
tracking_dir = os.path.join(video_frames_dir, "tracking")
# Create all required directories
os.makedirs(generated_dir, exist_ok=True)
os.makedirs(group_dir, exist_ok=True)
os.makedirs(groundtruth_dir, exist_ok=True)
os.makedirs(generated_frames_dir, exist_ok=True)
os.makedirs(tracking_dir, exist_ok=True)
# Convert original video tensor to numpy array and adjust format
original_frames = []
for frame in original_video:
frame = frame.permute(1,2,0).to(dtype=torch.float32,device="cpu").numpy()
frame = ((frame + 1.0) * 127.5).astype(np.uint8)
original_frames.append(frame)
tracking_frames = []
if tracking_maps is not None:
for frame in tracking_maps:
frame = frame.permute(1,2,0).to(dtype=torch.float32,device="cpu").numpy()
frame = ((frame + 1.0) * 127.5).astype(np.uint8)
tracking_frames.append(frame)
# Ensure all videos have same number of frames
num_frames = min(len(generated_frames), len(original_frames))
if tracking_maps is not None:
num_frames = min(num_frames, len(tracking_frames))
generated_frames = generated_frames[:num_frames]
original_frames = original_frames[:num_frames]
if tracking_maps is not None:
tracking_frames = tracking_frames[:num_frames]
# Convert generated PIL images to numpy arrays
generated_frames_np = [np.array(frame) for frame in generated_frames]
# Save generated video separately to generated folder
gen_video_path = os.path.join(generated_dir, f"{name_without_ext}_generated.mp4")
with imageio.get_writer(gen_video_path, fps=fps) as writer:
for frame in generated_frames_np:
writer.append_data(frame)
# Concatenate frames vertically and save sampled frames
concat_frames = []
for i in range(num_frames):
gen_frame = generated_frames_np[i]
orig_frame = original_frames[i]
width = min(gen_frame.shape[1], orig_frame.shape[1])
height = orig_frame.shape[0]
gen_frame = Image.fromarray(gen_frame).resize((width, height))
gen_frame = np.array(gen_frame)
orig_frame = Image.fromarray(orig_frame).resize((width, height))
orig_frame = np.array(orig_frame)
if tracking_maps is not None:
track_frame = tracking_frames[i]
track_frame = Image.fromarray(track_frame).resize((width, height))
track_frame = np.array(track_frame)
right_concat = np.concatenate([orig_frame, track_frame], axis=0)
right_concat_pil = Image.fromarray(right_concat)
new_height = right_concat.shape[0] // 2
new_width = right_concat.shape[1] // 2
right_concat_resized = right_concat_pil.resize((new_width, new_height))
right_concat_resized = np.array(right_concat_resized)
concat_frame = np.concatenate([gen_frame, right_concat_resized], axis=1)
else:
orig_frame_pil = Image.fromarray(orig_frame)
new_height = orig_frame.shape[0] // 2
new_width = orig_frame.shape[1] // 2
orig_frame_resized = orig_frame_pil.resize((new_width, new_height))
orig_frame_resized = np.array(orig_frame_resized)
concat_frame = np.concatenate([gen_frame, orig_frame_resized], axis=1)
concat_frames.append(concat_frame)
# Save every 9 frames of each type of frame
if i % 9 == 0:
# Save generated frame
gen_frame_path = os.path.join(generated_frames_dir, f"{i:04d}.png")
Image.fromarray(gen_frame).save(gen_frame_path)
# Save original frame
gt_frame_path = os.path.join(groundtruth_dir, f"{i:04d}.png")
Image.fromarray(orig_frame).save(gt_frame_path)
# If tracking maps, save tracking frame
if tracking_maps is not None:
track_frame_path = os.path.join(tracking_dir, f"{i:04d}.png")
Image.fromarray(track_frame).save(track_frame_path)
# Export concatenated video to group folder
group_video_path = os.path.join(group_dir, filename)
with imageio.get_writer(group_video_path, fps=fps) as writer:
for frame in concat_frames:
writer.append_data(frame)
return group_video_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, help="Optional: override the prompt from dataset")
parser.add_argument(
"--image_or_video_path",
type=str,
default=None,
help="The path of the image to be used as the background of the video",
)
parser.add_argument(
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
)
parser.add_argument(
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
)
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument(
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
)
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument(
"--generate_type", type=str, default="i2v", help="The type of video generation (e.g., 'i2v', 'i2vo')"
)
parser.add_argument(
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
)
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
parser.add_argument("--tracking_path", type=str, default=None, help="The path of the tracking maps to be used")
# Dataset related parameters are required
parser.add_argument("--data_root", type=str, required=True, help="Root directory of the dataset")
parser.add_argument("--caption_column", type=str, required=True, help="Name of the caption column")
parser.add_argument("--tracking_column", type=str, required=True, help="Name of the tracking column")
parser.add_argument("--video_column", type=str, required=True, help="Name of the video column")
parser.add_argument("--image_paths", type=str, required=False, help="Name of the image column")
# Add num_samples parameter
parser.add_argument("--num_samples", type=int, default=-1,
help="Number of samples to process. -1 means process all samples")
# Add evaluation_dir parameter
parser.add_argument("--evaluation_dir", type=str, default="evaluations",
help="Name of the directory to store evaluation results")
# Add fps parameter
parser.add_argument("--fps", type=int, default=8,
help="Frames per second for the output video")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
# If prompt is not provided, generate_video function will use prompts from dataset
generate_video(
prompt=args.prompt, # Can be None
model_path=args.model_path,
tracking_path=args.tracking_path,
image_paths=args.image_paths,
output_path=args.output_path,
image_or_video_path=args.image_or_video_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
dtype=dtype,
generate_type=args.generate_type,
seed=args.seed,
data_root=args.data_root,
caption_column=args.caption_column,
tracking_column=args.tracking_column,
video_column=args.video_column,
num_samples=args.num_samples,
evaluation_dir=args.evaluation_dir,
fps=args.fps,
) |