File size: 30,567 Bytes
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import argparse
from typing import Any, Dict, List, Literal, Tuple
import pandas as pd
import os
import sys

import torch
from diffusers import (
    CogVideoXPipeline,
    CogVideoXDDIMScheduler,
    CogVideoXDPMScheduler,
    CogVideoXImageToVideoPipeline,
    CogVideoXVideoToVideoPipeline,
)

from diffusers.utils import export_to_video, load_image, load_video

import numpy as np
import random
import cv2
from pathlib import Path
import decord
from torchvision import transforms
from torchvision.transforms.functional import resize

import PIL.Image
from PIL import Image

current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(current_dir, '..'))
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking, CogVideoXPipelineTracking, CogVideoXVideoToVideoPipelineTracking
from training.dataset import VideoDataset, VideoDatasetWithResizingTracking

class VideoDatasetWithResizingTrackingEval(VideoDataset):
    def __init__(self, *args, **kwargs) -> None:
        self.tracking_column = kwargs.pop("tracking_column", None)
        self.image_paths = kwargs.pop("image_paths", None)
        super().__init__(*args, **kwargs)

    def _preprocess_video(self, path: Path, tracking_path: Path, image_paths: Path = None) -> torch.Tensor:
        if self.load_tensors:
            return self._load_preprocessed_latents_and_embeds(path, tracking_path)
        else:
            video_reader = decord.VideoReader(uri=path.as_posix())
            video_num_frames = len(video_reader)
            nearest_frame_bucket = min(
                self.frame_buckets, key=lambda x: abs(x - min(video_num_frames, self.max_num_frames))
            )

            frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))

            frames = video_reader.get_batch(frame_indices)
            frames = frames[:nearest_frame_bucket].float()
            frames = frames.permute(0, 3, 1, 2).contiguous()

            nearest_res = self._find_nearest_resolution(frames.shape[2], frames.shape[3])
            frames_resized = torch.stack([resize(frame, nearest_res) for frame in frames], dim=0)
            frames = torch.stack([self.video_transforms(frame) for frame in frames_resized], dim=0)

            image = Image.open(image_paths)
            if image.mode != 'RGB':
                image = image.convert('RGB')

            image = torch.from_numpy(np.array(image)).float()
            image = image.permute(2, 0, 1).contiguous()
            image = resize(image, nearest_res)
            image = self.video_transforms(image)

            tracking_reader = decord.VideoReader(uri=tracking_path.as_posix())
            tracking_frames = tracking_reader.get_batch(frame_indices)
            tracking_frames = tracking_frames[:nearest_frame_bucket].float()
            tracking_frames = tracking_frames.permute(0, 3, 1, 2).contiguous()
            tracking_frames_resized = torch.stack([resize(tracking_frame, nearest_res) for tracking_frame in tracking_frames], dim=0)
            tracking_frames = torch.stack([self.video_transforms(tracking_frame) for tracking_frame in tracking_frames_resized], dim=0)

            return image, frames, tracking_frames, None

    def _find_nearest_resolution(self, height, width):
        nearest_res = min(self.resolutions, key=lambda x: abs(x[1] - height) + abs(x[2] - width))
        return nearest_res[1], nearest_res[2]
    
    def _load_dataset_from_local_path(self) -> Tuple[List[str], List[str], List[str]]:
        if not self.data_root.exists():
            raise ValueError("Root folder for videos does not exist")

        prompt_path = self.data_root.joinpath(self.caption_column)
        video_path = self.data_root.joinpath(self.video_column)
        tracking_path = self.data_root.joinpath(self.tracking_column)
        image_paths = self.data_root.joinpath(self.image_paths)

        if not prompt_path.exists() or not prompt_path.is_file():
            raise ValueError(
                "Expected `--caption_column` to be path to a file in `--data_root` containing line-separated text prompts."
            )
        if not video_path.exists() or not video_path.is_file():
            raise ValueError(
                "Expected `--video_column` to be path to a file in `--data_root` containing line-separated paths to video data in the same directory."
            )
        if not tracking_path.exists() or not tracking_path.is_file():
            raise ValueError(
                "Expected `--tracking_column` to be path to a file in `--data_root` containing line-separated tracking information."
            )

        with open(prompt_path, "r", encoding="utf-8") as file:
            prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
        with open(video_path, "r", encoding="utf-8") as file:
            video_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]
        with open(tracking_path, "r", encoding="utf-8") as file:
            tracking_paths = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]

        with open(image_paths, "r", encoding="utf-8") as file:
            image_paths_list = [self.data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0]

        if not self.load_tensors and any(not path.is_file() for path in video_paths):
            raise ValueError(
                f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found atleast one path that is not a valid file."
            )

        self.tracking_paths = tracking_paths
        self.image_paths = image_paths_list
        return prompts, video_paths

    def _load_dataset_from_csv(self) -> Tuple[List[str], List[str], List[str]]:
        df = pd.read_csv(self.dataset_file)
        prompts = df[self.caption_column].tolist()
        video_paths = df[self.video_column].tolist()
        tracking_paths = df[self.tracking_column].tolist()
        image_paths = df[self.image_paths].tolist()
        video_paths = [self.data_root.joinpath(line.strip()) for line in video_paths]
        tracking_paths = [self.data_root.joinpath(line.strip()) for line in tracking_paths]
        image_paths = [self.data_root.joinpath(line.strip()) for line in image_paths]

        if any(not path.is_file() for path in video_paths):
            raise ValueError(
                f"Expected `{self.video_column=}` to be a path to a file in `{self.data_root=}` containing line-separated paths to video data but found at least one path that is not a valid file."
            )

        self.tracking_paths = tracking_paths
        self.image_paths = image_paths
        return prompts, video_paths
    
    def __getitem__(self, index: int) -> Dict[str, Any]:
        if isinstance(index, list):
            return index

        if self.load_tensors:
            image_latents, video_latents, prompt_embeds = self._preprocess_video(self.video_paths[index], self.tracking_paths[index])

            # The VAE's temporal compression ratio is 4.
            # The VAE's spatial compression ratio is 8.
            latent_num_frames = video_latents.size(1)
            if latent_num_frames % 2 == 0:
                num_frames = latent_num_frames * 4
            else:
                num_frames = (latent_num_frames - 1) * 4 + 1

            height = video_latents.size(2) * 8
            width = video_latents.size(3) * 8

            return {
                "prompt": prompt_embeds,
                "image": image_latents,
                "video": video_latents,
                "tracking_map": tracking_map,
                "video_metadata": {
                    "num_frames": num_frames,
                    "height": height,
                    "width": width,
                },
            }
        else:
            image, video, tracking_map, _ = self._preprocess_video(self.video_paths[index], self.tracking_paths[index], self.image_paths[index])

            return {
                "prompt": self.id_token + self.prompts[index],
                "image": image,
                "video": video,
                "tracking_map": tracking_map,
                "video_metadata": {
                    "num_frames": video.shape[0],
                    "height": video.shape[2],
                    "width": video.shape[3],
                },
            }
    
    def _load_preprocessed_latents_and_embeds(self, path: Path, tracking_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
        filename_without_ext = path.name.split(".")[0]
        pt_filename = f"{filename_without_ext}.pt"

        # The current path is something like: /a/b/c/d/videos/00001.mp4
        # We need to reach: /a/b/c/d/video_latents/00001.pt
        image_latents_path = path.parent.parent.joinpath("image_latents")
        video_latents_path = path.parent.parent.joinpath("video_latents")
        tracking_map_path = path.parent.parent.joinpath("tracking_map")
        embeds_path = path.parent.parent.joinpath("prompt_embeds")

        if (
            not video_latents_path.exists()
            or not embeds_path.exists()
            or not tracking_map_path.exists()
            or (self.image_to_video and not image_latents_path.exists())
        ):
            raise ValueError(
                f"When setting the load_tensors parameter to `True`, it is expected that the `{self.data_root=}` contains folders named `video_latents`, `prompt_embeds`, and `tracking_map`. However, these folders were not found. Please make sure to have prepared your data correctly using `prepare_data.py`. Additionally, if you're training image-to-video, it is expected that an `image_latents` folder is also present."
            )

        if self.image_to_video:
            image_latent_filepath = image_latents_path.joinpath(pt_filename)
        video_latent_filepath = video_latents_path.joinpath(pt_filename)
        tracking_map_filepath = tracking_map_path.joinpath(pt_filename)
        embeds_filepath = embeds_path.joinpath(pt_filename)

        if not video_latent_filepath.is_file() or not embeds_filepath.is_file() or not tracking_map_filepath.is_file():
            if self.image_to_video:
                image_latent_filepath = image_latent_filepath.as_posix()
            video_latent_filepath = video_latent_filepath.as_posix()
            tracking_map_filepath = tracking_map_filepath.as_posix()
            embeds_filepath = embeds_filepath.as_posix()
            raise ValueError(
                f"The file {video_latent_filepath=} or {embeds_filepath=} or {tracking_map_filepath=} could not be found. Please ensure that you've correctly executed `prepare_dataset.py`."
            )

        images = (
            torch.load(image_latent_filepath, map_location="cpu", weights_only=True) if self.image_to_video else None
        )
        latents = torch.load(video_latent_filepath, map_location="cpu", weights_only=True)
        tracking_map = torch.load(tracking_map_filepath, map_location="cpu", weights_only=True)
        embeds = torch.load(embeds_filepath, map_location="cpu", weights_only=True)

        return images, latents, tracking_map, embeds

def sample_from_dataset(
    data_root: str,
    caption_column: str,
    tracking_column: str,
    image_paths: str,
    video_column: str,
    num_samples: int = -1,
    random_seed: int = 42
):
    """Sample from dataset"""
    if image_paths:
        # If image_paths is provided, use VideoDatasetWithResizingTrackingEval
        dataset = VideoDatasetWithResizingTrackingEval(
            data_root=data_root,
            caption_column=caption_column,
            tracking_column=tracking_column,
            image_paths=image_paths,
            video_column=video_column,
            max_num_frames=49,
            load_tensors=False,
            random_flip=None,
            frame_buckets=[49],
            image_to_video=True
        )
    else:
        # If image_paths is not provided, use VideoDatasetWithResizingTracking
        dataset = VideoDatasetWithResizingTracking(
            data_root=data_root,
            caption_column=caption_column,
            tracking_column=tracking_column,
            video_column=video_column,
            max_num_frames=49,
            load_tensors=False,
            random_flip=None,
            frame_buckets=[49],
            image_to_video=True
        )
    
    # Set random seed
    random.seed(random_seed)
    
    # Randomly sample from dataset
    total_samples = len(dataset)
    if num_samples == -1:
        # If num_samples is -1, process all samples
        selected_indices = range(total_samples)
    else:
        selected_indices = random.sample(range(total_samples), min(num_samples, total_samples))
    
    samples = []
    for idx in selected_indices:
        sample = dataset[idx]
        # Get data based on dataset.__getitem__ return value
        image = sample["image"]  # Already processed tensor
        video = sample["video"]  # Already processed tensor
        tracking_map = sample["tracking_map"]  # Already processed tensor
        prompt = sample["prompt"]
        
        samples.append({
            "prompt": prompt,
            "tracking_frame": tracking_map[0],  # Get first frame
            "video_frame": image,  # Get first frame
            "video": video,  # Complete video
            "tracking_maps": tracking_map,  # Complete tracking maps
            "height": sample["video_metadata"]["height"],
            "width": sample["video_metadata"]["width"]
        })
    
    return samples

def generate_video(
    prompt: str,
    model_path: str,
    tracking_path: str = None,
    output_path: str = "./output.mp4",
    image_or_video_path: str = "",
    num_inference_steps: int = 50,
    guidance_scale: float = 6.0,
    num_videos_per_prompt: int = 1,
    dtype: torch.dtype = torch.bfloat16,
    generate_type: str = Literal["i2v", "i2vo"],  # i2v: image to video, i2vo: original CogVideoX-5b-I2V
    seed: int = 42,
    data_root: str = None,
    caption_column: str = None,
    tracking_column: str = None,
    video_column: str = None,
    image_paths: str = None,
    num_samples: int = -1,
    evaluation_dir: str = "evaluations",
    fps: int = 8,
):
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # If dataset parameters are provided, sample from dataset
    samples = None
    if all([data_root, caption_column, tracking_column, video_column]):
        samples = sample_from_dataset(
            data_root=data_root,
            caption_column=caption_column,
            tracking_column=tracking_column,
            image_paths=image_paths,
            video_column=video_column,
            num_samples=num_samples,
            random_seed=seed
        )

    # Load model and data
    if generate_type == "i2v":
        pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype)
        if not samples:
            image = load_image(image=image_or_video_path)
            height, width = image.height, image.width
    else:
        pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=dtype)
        if not samples:
            image = load_image(image=image_or_video_path)
            height, width = image.height, image.width

    # Set model parameters
    pipe.to(device, dtype=dtype)
    pipe.vae.enable_slicing()
    pipe.vae.enable_tiling()
    pipe.transformer.eval()
    pipe.text_encoder.eval()
    pipe.vae.eval()
    pipe.transformer.gradient_checkpointing = False
    pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

    # Generate video
    if samples:
        from tqdm import tqdm
        for i, sample in tqdm(enumerate(samples), desc="Samples Num:"):
            print(f"Prompt: {sample['prompt'][:30]}")
            tracking_frame = sample["tracking_frame"].to(device=device, dtype=dtype)
            video_frame = sample["video_frame"].to(device=device, dtype=dtype)
            video = sample["video"].to(device=device, dtype=dtype)
            tracking_maps = sample["tracking_maps"].to(device=device, dtype=dtype)
            
            # VAE
            print("encoding tracking maps")
            tracking_video = tracking_maps
            tracking_maps = tracking_maps.unsqueeze(0)
            tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W]
            with torch.no_grad():
                tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
                tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
                tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)  # [B, F, C, H, W]


            pipeline_args = {
                "prompt": sample["prompt"],
                "negative_prompt": "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
                "num_inference_steps": num_inference_steps,
                "num_frames": 49,
                "use_dynamic_cfg": True,
                "guidance_scale": guidance_scale,
                "generator": torch.Generator(device=device).manual_seed(seed),
                "height": sample["height"],
                "width": sample["width"]
            }

            pipeline_args["image"] = (video_frame + 1.0) / 2.0
            
            if tracking_column and generate_type == "i2v":
                pipeline_args["tracking_maps"] = tracking_maps
                pipeline_args["tracking_image"] = (tracking_frame.unsqueeze(0) + 1.0) / 2.0

            with torch.no_grad():
                video_generate = pipe(**pipeline_args).frames[0]

            output_dir = os.path.join(data_root, evaluation_dir)
            output_name = f"{i:04d}.mp4"
            output_file = os.path.join(output_dir, output_name)
            os.makedirs(output_dir, exist_ok=True)
            export_concat_video(video_generate, video, tracking_video, output_file, fps=fps)
            
    else:
        pipeline_args = {
            "prompt": prompt,
            "num_videos_per_prompt": num_videos_per_prompt,
            "num_inference_steps": num_inference_steps,
            "num_frames": 49,
            "use_dynamic_cfg": True,
            "guidance_scale": guidance_scale,
            "generator": torch.Generator().manual_seed(seed),
        }

        pipeline_args["video"] = video
        pipeline_args["image"] = image
        pipeline_args["height"] = height
        pipeline_args["width"] = width

        if tracking_path and generate_type == "i2v":
            tracking_maps = load_video(tracking_path)
            tracking_maps = torch.stack([
                torch.from_numpy(np.array(frame)).permute(2, 0, 1).float() / 255.0 
                for frame in tracking_maps
            ]).to(device=device, dtype=dtype)
            
            tracking_video = tracking_maps
            tracking_maps = tracking_maps.unsqueeze(0)
            tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)
            with torch.no_grad():
                tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
                tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
                tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4)
            
            pipeline_args["tracking_maps"] = tracking_maps
            pipeline_args["tracking_image"] = tracking_maps[:, :1]

        with torch.no_grad():
            video_generate = pipe(**pipeline_args).frames[0]

        output_dir = os.path.join(data_root, evaluation_dir)
        output_name = f"{os.path.splitext(os.path.basename(image_or_video_path))[0]}.mp4"
        output_file = os.path.join(output_dir, output_name)
        os.makedirs(output_dir, exist_ok=True)
        export_concat_video(video_generate, video, tracking_video, output_file, fps=fps)

def create_frame_grid(frames: List[np.ndarray], interval: int = 9, max_cols: int = 7) -> np.ndarray:
    """
    Arrange video frames into a grid image by sampling at intervals
    
    Args:
        frames: List of video frames
        interval: Sampling interval
        max_cols: Maximum number of frames per row
    
    Returns:
        Grid image array
    """
    # Sample frames at intervals
    sampled_frames = frames[::interval]
    
    # Calculate number of rows and columns
    n_frames = len(sampled_frames)
    n_cols = min(max_cols, n_frames)
    n_rows = (n_frames + n_cols - 1) // n_cols
    
    # Get height and width of single frame
    frame_height, frame_width = sampled_frames[0].shape[:2]
    
    # Create blank canvas
    grid = np.zeros((frame_height * n_rows, frame_width * n_cols, 3), dtype=np.uint8)
    
    # Fill frames
    for idx, frame in enumerate(sampled_frames):
        i = idx // n_cols
        j = idx % n_cols
        grid[i*frame_height:(i+1)*frame_height, j*frame_width:(j+1)*frame_width] = frame
    
    return grid

def export_concat_video(
    generated_frames: List[PIL.Image.Image], 
    original_video: torch.Tensor,
    tracking_maps: torch.Tensor = None,
    output_video_path: str = None,
    fps: int = 8
) -> str:
    """
    Export generated video frames, original video and tracking maps as video files,
    and save sampled frames to different folders
    """
    import imageio
    import os
    
    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
        
    # Create subdirectories
    base_dir = os.path.dirname(output_video_path)
    generated_dir = os.path.join(base_dir, "generated")  # For storing generated videos
    group_dir = os.path.join(base_dir, "group")  # For storing concatenated videos
    
    # Get filename (without path) and create video-specific folder
    filename = os.path.basename(output_video_path)
    name_without_ext = os.path.splitext(filename)[0]
    video_frames_dir = os.path.join(base_dir, "frames", name_without_ext)  # frames/video_name/
    
    # Create three subdirectories under video-specific folder
    groundtruth_dir = os.path.join(video_frames_dir, "gt")
    generated_frames_dir = os.path.join(video_frames_dir, "generated")
    tracking_dir = os.path.join(video_frames_dir, "tracking")
    
    # Create all required directories
    os.makedirs(generated_dir, exist_ok=True)
    os.makedirs(group_dir, exist_ok=True)
    os.makedirs(groundtruth_dir, exist_ok=True)
    os.makedirs(generated_frames_dir, exist_ok=True)
    os.makedirs(tracking_dir, exist_ok=True)
    
    # Convert original video tensor to numpy array and adjust format
    original_frames = []
    for frame in original_video:
        frame = frame.permute(1,2,0).to(dtype=torch.float32,device="cpu").numpy()
        frame = ((frame + 1.0) * 127.5).astype(np.uint8)
        original_frames.append(frame)
    
    tracking_frames = []
    if tracking_maps is not None:
        for frame in tracking_maps:
            frame = frame.permute(1,2,0).to(dtype=torch.float32,device="cpu").numpy()
            frame = ((frame + 1.0) * 127.5).astype(np.uint8)
            tracking_frames.append(frame)
    
    # Ensure all videos have same number of frames
    num_frames = min(len(generated_frames), len(original_frames))
    if tracking_maps is not None:
        num_frames = min(num_frames, len(tracking_frames))
    
    generated_frames = generated_frames[:num_frames]
    original_frames = original_frames[:num_frames]
    if tracking_maps is not None:
        tracking_frames = tracking_frames[:num_frames]
    
    # Convert generated PIL images to numpy arrays
    generated_frames_np = [np.array(frame) for frame in generated_frames]
    
    # Save generated video separately to generated folder
    gen_video_path = os.path.join(generated_dir, f"{name_without_ext}_generated.mp4")
    with imageio.get_writer(gen_video_path, fps=fps) as writer:
        for frame in generated_frames_np:
            writer.append_data(frame)
    
    # Concatenate frames vertically and save sampled frames
    concat_frames = []
    for i in range(num_frames):
        gen_frame = generated_frames_np[i]
        orig_frame = original_frames[i]
        
        width = min(gen_frame.shape[1], orig_frame.shape[1])
        height = orig_frame.shape[0]
        
        gen_frame = Image.fromarray(gen_frame).resize((width, height))
        gen_frame = np.array(gen_frame)
        orig_frame = Image.fromarray(orig_frame).resize((width, height))
        orig_frame = np.array(orig_frame)
        
        if tracking_maps is not None:
            track_frame = tracking_frames[i]
            track_frame = Image.fromarray(track_frame).resize((width, height))
            track_frame = np.array(track_frame)
            
            right_concat = np.concatenate([orig_frame, track_frame], axis=0)
            
            right_concat_pil = Image.fromarray(right_concat)
            new_height = right_concat.shape[0] // 2
            new_width = right_concat.shape[1] // 2
            right_concat_resized = right_concat_pil.resize((new_width, new_height))
            right_concat_resized = np.array(right_concat_resized)
            
            concat_frame = np.concatenate([gen_frame, right_concat_resized], axis=1)
        else:
            orig_frame_pil = Image.fromarray(orig_frame)
            new_height = orig_frame.shape[0] // 2
            new_width = orig_frame.shape[1] // 2
            orig_frame_resized = orig_frame_pil.resize((new_width, new_height))
            orig_frame_resized = np.array(orig_frame_resized)
            
            concat_frame = np.concatenate([gen_frame, orig_frame_resized], axis=1)
        
        concat_frames.append(concat_frame)
        
        # Save every 9 frames of each type of frame
        if i % 9 == 0:
            # Save generated frame
            gen_frame_path = os.path.join(generated_frames_dir, f"{i:04d}.png")
            Image.fromarray(gen_frame).save(gen_frame_path)
            
            # Save original frame
            gt_frame_path = os.path.join(groundtruth_dir, f"{i:04d}.png")
            Image.fromarray(orig_frame).save(gt_frame_path)
            
            # If tracking maps, save tracking frame
            if tracking_maps is not None:
                track_frame_path = os.path.join(tracking_dir, f"{i:04d}.png")
                Image.fromarray(track_frame).save(track_frame_path)
    
    # Export concatenated video to group folder
    group_video_path = os.path.join(group_dir, filename)
    with imageio.get_writer(group_video_path, fps=fps) as writer:
        for frame in concat_frames:
            writer.append_data(frame)
            
    return group_video_path

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
    parser.add_argument("--prompt", type=str, help="Optional: override the prompt from dataset")
    parser.add_argument(
        "--image_or_video_path",
        type=str,
        default=None,
        help="The path of the image to be used as the background of the video",
    )
    parser.add_argument(
        "--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
    )
    parser.add_argument(
        "--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
    )
    parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
    parser.add_argument(
        "--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
    )
    parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
    parser.add_argument(
        "--generate_type", type=str, default="i2v", help="The type of video generation (e.g., 'i2v', 'i2vo')"
    )
    parser.add_argument(
        "--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
    )
    parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
    parser.add_argument("--tracking_path", type=str, default=None, help="The path of the tracking maps to be used")
    
    # Dataset related parameters are required
    parser.add_argument("--data_root", type=str, required=True, help="Root directory of the dataset")
    parser.add_argument("--caption_column", type=str, required=True, help="Name of the caption column")
    parser.add_argument("--tracking_column", type=str, required=True, help="Name of the tracking column")
    parser.add_argument("--video_column", type=str, required=True, help="Name of the video column")
    parser.add_argument("--image_paths", type=str, required=False, help="Name of the image column")
    
    # Add num_samples parameter
    parser.add_argument("--num_samples", type=int, default=-1, 
                       help="Number of samples to process. -1 means process all samples")
    
    # Add evaluation_dir parameter
    parser.add_argument("--evaluation_dir", type=str, default="evaluations", 
                       help="Name of the directory to store evaluation results")
    
    # Add fps parameter
    parser.add_argument("--fps", type=int, default=8, 
                       help="Frames per second for the output video")

    args = parser.parse_args()
    dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
    
    # If prompt is not provided, generate_video function will use prompts from dataset
    generate_video(
        prompt=args.prompt,  # Can be None
        model_path=args.model_path,
        tracking_path=args.tracking_path,
        image_paths=args.image_paths,
        output_path=args.output_path,
        image_or_video_path=args.image_or_video_path,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        num_videos_per_prompt=args.num_videos_per_prompt,
        dtype=dtype,
        generate_type=args.generate_type,
        seed=args.seed,
        data_root=args.data_root,
        caption_column=args.caption_column,
        tracking_column=args.tracking_column,
        video_column=args.video_column,
        num_samples=args.num_samples,
        evaluation_dir=args.evaluation_dir,
        fps=args.fps,
    )