Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,604 Bytes
3aba902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from pathlib import Path
import sys
sys.path.append(str(Path(__file__).absolute().parents[1]))
from typing import *
import itertools
import json
import warnings
import cv2
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
import trimesh
import trimesh.visual
import click
from moge.model import MoGeModel
from moge.utils.io import save_glb, save_ply
from moge.utils.vis import colorize_depth, colorize_normal
import utils3d
@click.command(help='Inference script for the MoGe model.')
@click.option('--input', 'input_path', type=click.Path(exists=True), help='Input image or folder path. "jpg" and "png" are supported.')
@click.option('--fov_x', 'fov_x_', type=float, default=None, help='If camera parameters are known, set the horizontal field of view in degrees. Otherwise, MoGe will estimate it.')
@click.option('--output', 'output_path', type=click.Path(), help='Output folder path')
@click.option('--pretrained', 'pretrained_model_name_or_path', type=str, default='Ruicheng/moge-vitl', help='Pretrained model name or path. Default is "Ruicheng/moge-vitl"')
@click.option('--device', 'device_name', type=str, default='cuda', help='Device name (e.g. "cuda", "cuda:0", "cpu"). Default is "cuda"')
@click.option('--resize', 'resize_to', type=int, default=None, help='Resize the image(s) & output maps to a specific size. Default is None (no resizing).')
@click.option('--resolution_level', type=int, default=9, help='An integer [0-9] for the resolution level of inference. The higher, the better but slower. Default is 9. Note that it is irrelevant to the output resolution.')
@click.option('--threshold', type=float, default=0.03, help='Threshold for removing edges. Default is 0.03. Smaller value removes more edges. "inf" means no thresholding.')
@click.option('--maps', 'save_maps_', is_flag=True, help='Whether to save the output maps and fov(image, depth, mask, points, fov).')
@click.option('--glb', 'save_glb_', is_flag=True, help='Whether to save the output as a.glb file. The color will be saved as a texture.')
@click.option('--ply', 'save_ply_', is_flag=True, help='Whether to save the output as a.ply file. The color will be saved as vertex colors.')
@click.option('--show', 'show', is_flag=True, help='Whether show the output in a window. Note that this requires pyglet<2 installed as required by trimesh.')
def main(
input_path: str,
fov_x_: float,
output_path: str,
pretrained_model_name_or_path: str,
device_name: str,
resize_to: int,
resolution_level: int,
threshold: float,
save_maps_: bool,
save_glb_: bool,
save_ply_: bool,
show: bool,
):
device = torch.device(device_name)
include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']
if Path(input_path).is_dir():
image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices)))
else:
image_paths = [Path(input_path)]
if len(image_paths) == 0:
raise FileNotFoundError(f'No image files found in {input_path}')
model = MoGeModel.from_pretrained(pretrained_model_name_or_path).to(device).eval()
for image_path in (pbar := tqdm(image_paths, desc='Inference', disable=len(image_paths) <= 1)):
image = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
if resize_to is not None:
height, width = min(resize_to, int(resize_to * height / width)), min(resize_to, int(resize_to * width / height))
image = cv2.resize(image, (width, height), cv2.INTER_AREA)
image_tensor = torch.tensor(image / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
# Inference
output = model.infer(image_tensor, fov_x=fov_x_)
points, depth, mask, intrinsics = output['points'].cpu().numpy(), output['depth'].cpu().numpy(), output['mask'].cpu().numpy(), output['intrinsics'].cpu().numpy()
normals, normals_mask = utils3d.numpy.points_to_normals(points, mask=mask)
# Write outputs
if not any([save_maps_, save_glb_, save_ply_]):
warnings.warn('No output format specified. Please use "--maps", "--glb", or "--ply" to specify the output.')
save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem)
save_path.mkdir(exist_ok=True, parents=True)
if save_maps_:
cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_path / 'depth_vis.png'), cv2.cvtColor(colorize_depth(depth), cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_path / 'depth.exr'), depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
cv2.imwrite(str(save_path / 'mask.png'), (mask * 255).astype(np.uint8))
cv2.imwrite(str(save_path / 'points.exr'), cv2.cvtColor(points, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
fov_x, fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics)
with open(save_path / 'fov.json', 'w') as f:
json.dump({
'fov_x': round(float(np.rad2deg(fov_x)), 2),
'fov_y': round(float(np.rad2deg(fov_y)), 2),
}, f)
# Export mesh & visulization
if save_glb_ or save_ply_ or show:
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
points,
image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
mask=mask & ~(utils3d.numpy.depth_edge(depth, rtol=threshold, mask=mask) & utils3d.numpy.normals_edge(normals, tol=5, mask=normals_mask)),
tri=True
)
# When exporting the model, follow the OpenGL coordinate conventions:
# - world coordinate system: x right, y up, z backward.
# - texture coordinate system: (0, 0) for left-bottom, (1, 1) for right-top.
vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1]
if save_glb_:
save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image)
if save_ply_:
save_ply(save_path / 'mesh.ply', vertices, faces, vertex_colors)
if show:
trimesh.Trimesh(
vertices=vertices,
vertex_colors=vertex_colors,
faces=faces,
process=False
).show()
if __name__ == '__main__':
main()
|