File size: 6,604 Bytes
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from pathlib import Path
import sys
sys.path.append(str(Path(__file__).absolute().parents[1]))

from typing import *
import itertools
import json
import warnings

import cv2
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
import trimesh
import trimesh.visual
import click

from moge.model import MoGeModel
from moge.utils.io import save_glb, save_ply
from moge.utils.vis import colorize_depth, colorize_normal
import utils3d


@click.command(help='Inference script for the MoGe model.')
@click.option('--input', 'input_path', type=click.Path(exists=True), help='Input image or folder path. "jpg" and "png" are supported.')
@click.option('--fov_x', 'fov_x_', type=float, default=None, help='If camera parameters are known, set the horizontal field of view in degrees. Otherwise, MoGe will estimate it.')
@click.option('--output', 'output_path', type=click.Path(), help='Output folder path')
@click.option('--pretrained', 'pretrained_model_name_or_path', type=str, default='Ruicheng/moge-vitl', help='Pretrained model name or path. Default is "Ruicheng/moge-vitl"')
@click.option('--device', 'device_name', type=str, default='cuda', help='Device name (e.g. "cuda", "cuda:0", "cpu"). Default is "cuda"')
@click.option('--resize', 'resize_to', type=int, default=None, help='Resize the image(s) & output maps to a specific size. Default is None (no resizing).')
@click.option('--resolution_level', type=int, default=9, help='An integer [0-9] for the resolution level of inference. The higher, the better but slower. Default is 9. Note that it is irrelevant to the output resolution.')
@click.option('--threshold', type=float, default=0.03, help='Threshold for removing edges. Default is 0.03. Smaller value removes more edges. "inf" means no thresholding.')
@click.option('--maps', 'save_maps_', is_flag=True, help='Whether to save the output maps and fov(image, depth, mask, points, fov).')
@click.option('--glb', 'save_glb_', is_flag=True, help='Whether to save the output as a.glb file. The color will be saved as a texture.')
@click.option('--ply', 'save_ply_', is_flag=True, help='Whether to save the output as a.ply file. The color will be saved as vertex colors.')
@click.option('--show', 'show', is_flag=True, help='Whether show the output in a window. Note that this requires pyglet<2 installed as required by trimesh.')
def main(
    input_path: str,
    fov_x_: float,
    output_path: str,
    pretrained_model_name_or_path: str,
    device_name: str,
    resize_to: int,
    resolution_level: int,
    threshold: float,
    save_maps_: bool,
    save_glb_: bool,
    save_ply_: bool,
    show: bool,
):  
    device = torch.device(device_name)

    include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']
    if Path(input_path).is_dir():
        image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices)))
    else:
        image_paths = [Path(input_path)]
    
    if len(image_paths) == 0:
        raise FileNotFoundError(f'No image files found in {input_path}')

    model = MoGeModel.from_pretrained(pretrained_model_name_or_path).to(device).eval()

    for image_path in (pbar := tqdm(image_paths, desc='Inference', disable=len(image_paths) <= 1)):
        image = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB)
        height, width = image.shape[:2]
        if resize_to is not None:
            height, width = min(resize_to, int(resize_to * height / width)), min(resize_to, int(resize_to * width / height))
            image = cv2.resize(image, (width, height), cv2.INTER_AREA)
        image_tensor = torch.tensor(image / 255, dtype=torch.float32, device=device).permute(2, 0, 1)

        # Inference
        output = model.infer(image_tensor, fov_x=fov_x_)
        points, depth, mask, intrinsics = output['points'].cpu().numpy(), output['depth'].cpu().numpy(), output['mask'].cpu().numpy(), output['intrinsics'].cpu().numpy()
        normals, normals_mask = utils3d.numpy.points_to_normals(points, mask=mask)

        # Write outputs
        if not any([save_maps_, save_glb_, save_ply_]):
            warnings.warn('No output format specified. Please use "--maps", "--glb", or "--ply" to specify the output.')

        save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem)
        save_path.mkdir(exist_ok=True, parents=True)

        if save_maps_:
            cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
            cv2.imwrite(str(save_path / 'depth_vis.png'), cv2.cvtColor(colorize_depth(depth), cv2.COLOR_RGB2BGR))
            cv2.imwrite(str(save_path / 'depth.exr'), depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
            cv2.imwrite(str(save_path / 'mask.png'), (mask * 255).astype(np.uint8))
            cv2.imwrite(str(save_path / 'points.exr'), cv2.cvtColor(points, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
            fov_x, fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics)
            with open(save_path / 'fov.json', 'w') as f:
                json.dump({
                    'fov_x': round(float(np.rad2deg(fov_x)), 2),
                    'fov_y': round(float(np.rad2deg(fov_y)), 2),
                }, f)

        # Export mesh & visulization
        if save_glb_ or save_ply_ or show:
            faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
                points,
                image.astype(np.float32) / 255,
                utils3d.numpy.image_uv(width=width, height=height),
                mask=mask & ~(utils3d.numpy.depth_edge(depth, rtol=threshold, mask=mask) & utils3d.numpy.normals_edge(normals, tol=5, mask=normals_mask)),
                tri=True
            )
            # When exporting the model, follow the OpenGL coordinate conventions:
            # - world coordinate system: x right, y up, z backward.
            # - texture coordinate system: (0, 0) for left-bottom, (1, 1) for right-top.
            vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1]

        if save_glb_:
            save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image)

        if save_ply_:
            save_ply(save_path / 'mesh.ply', vertices, faces, vertex_colors)

        if show:
            trimesh.Trimesh(
                vertices=vertices,
                vertex_colors=vertex_colors,
                faces=faces, 
                process=False
            ).show()  


if __name__ == '__main__':
    main()