File size: 10,646 Bytes
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#python3.10
"""Hierachical configuration for different pipelines, using `yacs` 
(refered to https://github.com/rbgirshick/yacs) 

This projects contain the configuration for three aspects: 
    the regular config for experiment setting

    NOTE: Each experiment will be assigned a seperate working space, and the 
    intermediate results will be saved in the working space. The experimentes 
    folder structure is as follows:
    {
        /${ROOT_WORK_DIR}/
        └── ${PIPELINES_NAME}/
            β”œβ”€β”€ ${EXP_NAME}/
                β”œβ”€β”€ ${CHECKPOINT_DIR}/
                β”œβ”€β”€ ${RESULT_DIR}/
                β”œβ”€β”€ meta.json/
                └── ${LOG_DIR} 
    }

"""

import os, sys
from .yacs import CfgNode as CN
import argparse
import numpy as np

# the parser for boolean
def bool_parser(arg):
    """Parses an argument to boolean."""
    if isinstance(arg, bool):
        return arg
    if arg is None:
        return False
    if arg.lower() in ['1', 'true', 't', 'yes', 'y']:
        return True
    if arg.lower() in ['0', 'false', 'f', 'no', 'n']:
        return False
    raise ValueError(f'`{arg}` cannot be converted to boolean!')

# -----------------------------------------------------------------------------
# base cfg
# -----------------------------------------------------------------------------
cfg = CN()

# configuration for basic experiments
cfg.save_dir = "./checkpoints"
cfg.restore_ckpt = ""
cfg.model_name = "cotracker"
cfg.exp_name = ""

# NOTE: configuration for datasets and augmentation
cfg.dataset_root = ""
cfg.eval_datasets = [""]
cfg.dont_use_augs = False
cfg.crop_size = [384, 512]
cfg.traj_per_sample = 384
cfg.sample_vis_1st_frame = False
cfg.depth_near = 0.01 # meter
cfg.depth_far = 65.0 # meter
cfg.sequence_len = 24

# NOTE: configuration for network arch
cfg.sliding_window_len = 8
cfg.remove_space_attn = False
cfg.updateformer_hidden_size = 384
cfg.updateformer_num_heads = 8
cfg.updateformer_space_depth = 6
cfg.updateformer_time_depth = 6
cfg.model_stride = 4
cfg.train_iters = 4
cfg.if_ARAP = False
cfg.Embed3D = False
cfg.Loss_W_feat = 5e-1
cfg.Loss_W_cls = 1e-4
cfg.depth_color = False
cfg.flash_attn = False
cfg.corr_dp = True
cfg.support_grid = 0
cfg.backbone = "CNN"
cfg.enc_only = False
cfg.init_match = False
cfg.Nblock = 4

# NOTE: configuration for training and saving
cfg.nodes_num = 1
cfg.batch_size = 1
cfg.num_workers = 6
cfg.mixed_precision = False
cfg.lr = 0.0005
cfg.wdecay = 0.00001
cfg.num_steps = 200000
cfg.evaluate_every_n_epoch = 1
cfg.save_every_n_epoch = 1
cfg.validate_at_start = False
cfg.save_freq = 100
cfg.eval_max_seq_len = 1000
cfg.debug = False
cfg.fine_tune = False
cfg.aug_wind_sample = False
cfg.use_video_flip = False
cfg.fix_backbone = False
cfg.tune_backbone = False
cfg.tune_arap = False
cfg.tune_per_scene = False
cfg.use_hier_encoder = False
cfg.scales = [4, 2]


# NOTE: configuration for monocular depth estimator
cfg.mde_name = "zoedepth_nk"

# -----------------------------------------------------------------------------

# configurations for the command line
parser = argparse.ArgumentParser()

# config for the basic experiment
parser.add_argument("--save_dir", default="./checkpoints", type=str ,help="path to save checkpoints")
parser.add_argument("--restore_ckpt", default="", help="path to restore a checkpoint")
parser.add_argument("--model_name", default="cotracker", help="model name")
parser.add_argument("--exp_name", type=str, default="base",
                    help="the name for experiment",
                    )
# config for dataset and augmentation
parser.add_argument(
    "--dataset_root", type=str, help="path lo all the datasets (train and eval)"
)
parser.add_argument(
    "--eval_datasets", nargs="+", default=["things", "badja"],
    help="what datasets to use for evaluation",
)
parser.add_argument(
    "--dont_use_augs", action="store_true", default=False,
    help="don't apply augmentations during training",
)
parser.add_argument(
    "--crop_size", type=int, nargs="+", default=[384, 512],
    help="crop videos to this resolution during training",
)
parser.add_argument(
    "--traj_per_sample", type=int, default=768,
    help="the number of trajectories to sample for training",
)
parser.add_argument(
    "--depth_near", type=float, default=0.01, help="near plane depth"
)
parser.add_argument(
    "--depth_far", type=float, default=65.0, help="far plane depth"
)
parser.add_argument(
    "--sample_vis_1st_frame",
    action="store_true",
    default=False,
    help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
    "--sequence_len", type=int, default=24, help="train sequence length"
)
# configuration for network arch
parser.add_argument(
    "--sliding_window_len",
    type=int,
    default=8,
    help="length of the CoTracker sliding window",
)
parser.add_argument(
    "--remove_space_attn",
    action="store_true",
    default=False,
    help="remove space attention from CoTracker",
)
parser.add_argument(
    "--updateformer_hidden_size",
    type=int,
    default=384,
    help="hidden dimension of the CoTracker transformer model",
)
parser.add_argument(
    "--updateformer_num_heads",
    type=int,
    default=8,
    help="number of heads of the CoTracker transformer model",
)
parser.add_argument(
    "--updateformer_space_depth",
    type=int,
    default=6,
    help="number of group attention layers in the CoTracker transformer model",
)
parser.add_argument(
    "--updateformer_time_depth",
    type=int,
    default=6,
    help="number of time attention layers in the CoTracker transformer model",
)
parser.add_argument(
    "--model_stride",
    type=int,
    default=4,
    help="stride of the CoTracker feature network",
)
parser.add_argument(
    "--train_iters",
    type=int,
    default=4,
    help="number of updates to the disparity field in each forward pass.",
)
parser.add_argument(
    "--if_ARAP",
    action="store_true",
    default=False,
    help="if using ARAP loss in the optimization",
)
parser.add_argument(
    "--Embed3D",
    action="store_true",
    default=False,
    help="if using the 3D embedding for image",
)
parser.add_argument(
    "--Loss_W_feat",
    type=float,
    default=5e-1,
    help="weight for the feature loss",
)
parser.add_argument(
    "--Loss_W_cls",
    type=float,
    default=1e-4,
    help="weight for the classification loss",
)
parser.add_argument(
    "--depth_color",
    action="store_true",
    default=False,
    help="if using the color for depth",
)
parser.add_argument(
    "--flash_attn",
    action="store_true",
    default=False,
    help="if using the flash attention",
)
parser.add_argument(
    "--corr_dp",
    action="store_true",
    default=False,
    help="if using the correlation of depth",
)
parser.add_argument(
    "--support_grid",
    type=int,
    default=0,
    help="if using the support grid",
)
parser.add_argument(
    "--backbone",
    type=str,
    default="CNN",
    help="backbone for the CoTracker feature network",
)
parser.add_argument(
    "--enc_only",
    action="store_true",
    default=False,
    help="if using the encoder only",
)
parser.add_argument(
    "--init_match",
    action="store_true",
    default=False,
    help="if using the initial matching",
)
parser.add_argument(
    "--Nblock",
    type=int,
    default=4,
    help="number of blocks in the CoTracker feature network",
)

# configuration for training and saving
parser.add_argument(
    "--nodes_num", type=int, default=1, help="number of nodes used for training."
)
parser.add_argument(
    "--batch_size", type=int, default=1, help="batch size used during training."
)
parser.add_argument(
    "--num_workers", type=int, default=6, help="number of dataloader workers"
)

parser.add_argument(
    "--mixed_precision", 
    action="store_true", default=False,
    help="use mixed precision"
)
parser.add_argument("--lr", type=float, default=0.0005, help="max learning rate.")
parser.add_argument(
    "--wdecay", type=float, default=0.00001, help="Weight decay in optimizer."
)
parser.add_argument(
    "--num_steps", type=int, default=200000, help="length of training schedule."
)
parser.add_argument(
    "--evaluate_every_n_epoch",
    type=int,
    default=1,
    help="evaluate during training after every n epochs, after every epoch by default",
)
parser.add_argument(
    "--save_every_n_epoch",
    type=int,
    default=1,
    help="save checkpoints during training after every n epochs, after every epoch by default",
)
parser.add_argument(
    "--validate_at_start",
    action="store_true",
    default=False,
    help="whether to run evaluation before training starts",
)
parser.add_argument(
    "--save_freq",
    type=int,
    default=100,
    help="frequency of trajectory visualization during training",
)
parser.add_argument(
    "--eval_max_seq_len",
    type=int,
    default=1000,
    help="maximum length of evaluation videos",
)
parser.add_argument(
    "--debug",
    action="store_true",
    default=False,
    help="if using the visibility mask",
)
parser.add_argument(
    "--fine_tune",
    action="store_true",
    default=False,
    help="if fine tune the model",
)
parser.add_argument(
    "--aug_wind_sample",
    action="store_true",
    default=False,
    help="if using the window sampling",
)
parser.add_argument(
    "--use_video_flip",
    action="store_true",
    default=False,
    help="if using the video flip",
)
parser.add_argument(
    "--fix_backbone",
    action="store_true",
    default=False,
    help="if fix the backbone",
)
parser.add_argument(
    "--tune_backbone",
    action="store_true",
    default=False,
    help="if tune the backbone",
)
parser.add_argument(
    "--tune_arap",
    action="store_true",
    default=False,
    help="if fix the backbone",
)
parser.add_argument(
    "--tune_per_scene",
    action="store_true",
    default=False,
    help="if tune one scene",
)
parser.add_argument(
    "--use_hier_encoder",
    action="store_true",
    default=False,
    help="if using the hierarchical encoder",
)
parser.add_argument(
    "--scales",
    type=int,
    nargs="+",
    default=[4, 2],
    help="scales for the CoTracker feature network",
)

# config for monocular depth estimator
parser.add_argument(
    "--mde_name", type=str, default="zoedepth_nk", help="name of the MDE model"
)
args = parser.parse_args()
args_dict = vars(args)

# -----------------------------------------------------------------------------

# merge the `args` to the `cfg`
cfg.merge_from_dict(args_dict)

cfg.ckpt_path=os.path.join(args.save_dir, args.model_name ,args.exp_name)